Nav: Home

100 percent renewable energy sources require overcapacity

January 25, 2017

Germany decided to go nuclear-free by 2022. A CO2-emission-free electricity supply system based on intermittent sources, such as wind and solar - or photovoltaic (PV) - power could replace nuclear power. However, these sources depend on the weather conditions. In a new study published in EPJ Plus, Fritz Wagner from the Max Planck Institute for Plasma Physics in Germany analysed weather conditions using 2010, 2012, 2013 and 2015 data derived from the electricity supply system itself, instead of relying on meteorological data. By scaling existing data up to a 100% supply from intermittent renewable energy sources, the author demonstrates that an average 325 GW wind and PV power are required to meet the 100% renewable energy target. This study shows the complexity of replacing the present primary energy supply with electricity from intermittent renewable sources, which would inevitably need to be supplemented by other forms of CO2-free energy production.

Intermittent sources are, by definition, unsteady. Therefore, a back-up system capable of providing power at a level of 89% of peak load would be needed. This requires creating an oversised power system to produce large amounts of surplus energy. A day storage to handle surplus is ineffective because of the day-night correlation of surplus power in the winter. A seasonal storage system loses its character when transformation losses are considered; indeed, it only contributes to the power supply after periods with excessive surplus production.

The option of an oversized, intermittent renewable-energy-sources system to feed the storage is also ineffective. This is because, in this case, energy can be taken directly from the large intermittent supply, making storage superfluous. In addition, the impact on land use and the transformation of landscape by an unprecedented density of wind convertors and transmission lines needs to be taken into consideration. He also warns of the risk that it will intensify social resistance.

F. Wagner (2017), Surplus from and storage of electricity generated by intermittent sources, Eur. Phys. J. Plus 131: 445, DOI 10.1140/epjp/i2016-16445-3


Related Nuclear Articles:

US nuclear regulators greatly underestimate potential for nuclear disaster
The US Nuclear Regulatory Commission relied on faulty analysis to justify its refusal to adopt a critical measure for protecting Americans from nuclear-waste fires at dozens of reactor sites around the country, according to an article in the May 26 issue of Science magazine.
Visualizing nuclear radiation
Extraordinary decontamination efforts are underway in areas affected by the 2011 nuclear accidents in Japan.
New path suggested for nuclear fusion
Scientists at Rice University, the University of Illinois at Urbana-Champaign and the University of Chile offer a glimpse into a possible new path toward the production of energy through nuclear fusion.
Physics: Toward a practical nuclear pendulum
Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element.
Researchers model the way into a nuclear future
The main type of nuclear fuel is the uranium oxide pellet composition.
Nuclear CSI: Noninvasive procedure could identify criminal nuclear activity
Determining if an individual has handled nuclear materials is a challenge national defense agencies currently face.
A new method to help solve the problem of nuclear waste
The article, published recently in Open Chemistry may lead to the development of a process to remove uranium from wastewater at the front-end of the nuclear fuel cycle, or even extracting natural uranium from sea water.
Nuclear puzzle may be clue to fifth force
In a new paper, University of California, Riverside theoretical physicist Flip Tanedo and his collaborators have made new progress towards unraveling a mystery in the beryllium nucleus that may be evidence for a fifth force of nature.
New approach to nuclear structure, freely available
The atomic nucleus is highly complex. Understanding this complexity often requires a tremendous amount of computational power.
Nuclear physics' interdisciplinary progress
The theoretical view of the structure of the atom nucleus is not carved in stone.

Related Nuclear Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".