Nav: Home

Objective: To deflect asteroids, thus preventing their collision with Earth

January 25, 2017

An international project, led by Spain's National Research Council, (CSIC) provides information on the effects a projectile impact would have on an asteroid. The aim of the project is to work out how an asteroid might be deflected so as not to collide with the Earth. The research, published in The Astrophysical Journal, focuses on the study of the asteroid Chelyabinsk, which exploded over Russian skies in 2013 after passing through the atmosphere.

The probability that a kilometre-sized asteroid could have devastating consequences after impact with the Earth is statistically small. What is more frequent, and repeatedly discovered, is that objects a few tens of meters across reach the Earth's atmosphere.

The results of this study indicate that the composition, internal structure, density and other physical properties of the asteroid are "fundamental in determining the success of a mission in which a kinetic projectile would be launched to deflect the orbit of a dangerous asteroid."

On February 15, 2013, an asteroid with a diameter of approximately 18 metres exploded over the Russian town of Chelíabinsk producing thousands of meteorites which fell to Earth. The fragmentation of this object in the atmosphere exemplified that Earth's atmosphere acts as an efficient shield, even though more than a thousand meteorites, each with a total mass exceeding one ton hit the ground. Despite being a small asteroid, the shock wave it produced when penetrating the atmosphere at hypersonic speed caused hundreds of injuries and considerable material damages.

"Studying the chemical and mineralogical composition of the Chelyabinsk meteorite allows us to grasp the importance of the collision compaction processes that asteroids suffer as they near the Earth. The results of this work are extremely relevant for a possible mission in which we want to efficiently deflect an asteroid which is close to Earth", says CSIC researcher Josep Maria Trigo of the Institute of Space Sciences. Thus, following rigorous and systematic work, the new study has discovered the properties of the materials that the asteroid is made of. In particular, their hardness, elasticity and their fracture resistance which could all be determinant for the impact of a kinetic projectile attempting to deflect an asteroid's orbit.

The experiments


The Chelyabinsk meteorite belongs to a group known as ordinary chondrites. The CSIC researchers chose it because it was considered representative, in terms its component materials, of the most potentially dangerous asteroids. Potentially hazardous asteroids which threaten the Earth suffer many collisions before reaching our planet, therefore their consistency increases and their minerals appear battered.

These experiments have been carried out using an instrument known as a nanoindentor. This consists of a small piston tipped with in a diamond head which applies a predefined pressure on, and generates small notches in, the material, while measuring both the depth achieved and the material's elastic recovery time. Therefore, it is possible to determine key parameters such as fracture strength, hardness, elastic recovery time, or Young's modulus. As the researcher Carles Moyano explains: "As ordinary chondrites are quite complex and heterogeneous rocks consisting of minerals with different properties, showing varying degrees of collision damage, a comprehensive study is required. In this case, the study required around two years of work".

The measurement of the mechanical properties of the Chelyabinsk meteorite was carried out at the nanoindentation laboratory which is led by the ICREA researcher Jordi Sort from Barcelona's Autonomous University. The study also included several European experts involved in the European Space Agency's proposed Asteroid Impact Mission. Thanks to these experiments being conducted by these meteorite pioneers, we are possibly closer to successfully facing any future encounter with asteroids.
-end-


Spanish National Research Council (CSIC)

Related Asteroid Articles:

It really was the asteroid
Fossil remains of tiny calcareous algae not only provide information about the end of the dinosaurs, but also show how the oceans recovered after the fatal asteroid impact.
Gigantic asteroid collision boosted biodiversity on Earth
An international study led by researchers from Lund University in Sweden has found that a collision in the asteroid belt 470 million years ago created drastic changes to life on Earth.
Uncovering the hidden history of a giant asteroid
A massive 'hit-and-run' collision profoundly impacted the evolutionary history of Vesta, the brightest asteroid visible from Earth.
Hubble watches spun-up asteroid coming apart
A small asteroid has been caught in the process of spinning so fast it's throwing off material, according to new data from NASA's Hubble Space Telescope and other observatories.
Hubble captures rare active asteroid
Thanks to an impressive collaboration bringing together data from ground-based telescopes, all-sky surveys and space-based facilities -- including the NASA/ESA Hubble Space Telescope -- a rare self-destructing asteroid called 6478 Gault has been observed.
Hayabusa2 probes asteroid for secrets
The first data received from the Hayabusa2 spacecraft in orbit of asteroid Ryugu helps space scientists explore conditions in the early solar system.
Dinosaurs were thriving before asteroid strike that wiped them out
Dinosaurs were unaffected by long-term climate changes and flourished before their sudden demise by asteroid strike.
FEFU astrophysicists studied asteroid 3200 Phaeton
Polarimetric investigation of a near-Earth asteroid Phaethon was carried out in December 2017 on its closest approach to the Earth.
Four extremely young asteroid families identified
Brazilian researchers dated the families using a numerical simulation method to process current data to go back in time to the asteroid formation era.
VLBA measures asteroid's characteristics
Astronomers took advantage of a celestial alignment to make a novel and creative radio observation yielding information about the size, shape, and orbit of an asteroid.
More Asteroid News and Asteroid Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab