Nav: Home

Study shows how HIV breaches macrophage defenses, could be step towards cure

January 25, 2017

A team led by UCL researchers has identified how HIV is able to infect macrophages, a type of white blood cell integral to the immune system, despite the presence of a protective protein. They discovered a treatment that can maintain macrophage defences which could be a key part of the puzzle of reaching a complete cure for HIV/AIDS.

Macrophages make an antiviral protein called SAMHD1, which prevents HIV from replicating in these cells - except for when the protein is switched off, as part of a natural process discovered by the UCL-led team.

"We knew that SAMHD1 is switched off when cells multiply, but macrophages do not multiply so it seemed unlikely that SAMHD1 would be switched off in these cells," said Professor Ravindra Gupta (UCL Infection & Immunity), the senior author of the paper. "And yet we found there's a window of opportunity when SAMHD1 is disabled as part of a regularly-occurring process in macrophages."

Lead author of the EMBO Journal study, Dr Petra Mlcochova (UCL Infection & Immunity) said: "Other viruses can disable SAMHD1, but HIV cannot. Our work explains how HIV can still infect macrophages, which are disabling SAMHD1 by themselves."

The reason why SAMHD1 gets switched off remains to be determined, but the authors suggest it might be done in order to repair damaged DNA, part of the normal functioning of the macrophage.

In a further part of the study, the researchers discovered how to close this window of opportunity by treating the cells with HDAC inhibitors, which are sometimes used in cancer treatments.

"Our findings could help explain why some people undergoing anti-retroviral therapy for HIV continue to have HIV replication in the brain, as the infected cells in the brain are typically macrophages. While this is a barrier to achieving control of HIV in just a minority of patients, it may more importantly be a barrier to a cure," Gupta added.

The researchers say that macrophages can be an important reservoir of HIV infection that lingers away from the reach of existing treatments. Once a macrophage is infected, it will continually produce the HIV virus, so cutting off that point of infection within the body could be an important step towards safeguarding the entire immune system. HDAC inhibitors may be particularly helpful as they're already known to reactivate latent HIV cells, thus making the virus vulnerable to the body's defences, especially if supported by anti-retroviral therapy.

The series of tests involved cultures of macrophages derived from human cells in vitro, which responded well to HDAC inhibitor treatment, as well as macrophages residing in mouse brain tissues.
-end-
Study co-authors included researchers from the University of Oxford, King's College London, and Emory University. The research was funded by Wellcome, the NIHR UCLH Biomedical Research Centre, the European Research Council, the Medical Research Council and the National Institutes of Health.

University College London

Related Immune System Articles:

Immune system upgrade
Theoretically, our immune system could detect and kill cancer cells.
Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
More Immune System News and Immune System Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab