Nav: Home

First step towards photonic quantum network

January 25, 2017

Advanced photonic nanostructures are well on their way to revolutionising quantum technology for quantum networks based on light. Researchers from the Niels Bohr Institute have now developed the first building blocks needed to construct complex quantum photonic circuits for quantum networks. This rapid development in quantum networks is highlighted in an article in the prestigious scientific journal, Nature.

Quantum technology based on light (photons) is called quantum photonics, while electronics is based on electrons. Photons (light particles) and electrons behave differently at the quantum level. A quantum entity is the smallest unit in the microscopic world. For example, photons are the fundamental constituent of light and electrons of electric current. Electrons are so-called fermions and can easily be isolated to conduct current one electron at a time. In contrast photons are bosons, which prefer to bunch together. But since information for quantum communication based on photonics is encoded in a single photon, it is necessary to emit and send them one at a time.

Increased information capacity

Information based on photons has great advantages; photons interact only very weakly with the environment - unlike electrons, so photons do not lose much energy along the way and can therefore be sent over long distances. Photons are therefore very well suited for carrying and distributing information and a quantum network based on photons will be able to encode much more information than is possible with current computer technology and the information could not be intercepted en route.

Many research groups around the world are working intensively in this research field, which is developing rapidly and in fact the first commercial quantum photonics products are starting to be manufactured.

Control of the photons

A prerequisite for quantum networks is the ability to create a stream of single photons on demand and the researchers at the Niels Bohr Institute succeeded in doing exactly that.

"We have developed a photonic chip, which acts as a photon gun. The photonic chip consists of an extremely small crystal that is 10 microns wide (one micron is a thousandth of a millimetre) and is 160 nanometres thick (1 nanometre is a thousandth of a micron). Embedded in the middle of the chip is a light source, which is a so-called quantum dot.

Illuminating the quantum dot with laser light excites an electron, which can then jump from one orbit to another and thereby emit a single photon at a time. Photons are usually emitted in all directions, but the photonic chip is designed so that all the photons are sent out through a photonic waveguide," explains Peter Lodahl, professor and head of the Quantum Photonics research group at the Niels Bohr Institute, University of Copenhagen.

In a long, laborious process, the research group further developed and tested the photonic chip until it achieved extreme efficiency and Peter Lodahl explains that it was particularly surprising that they could get the photon emission to occur in a way that was not previously thought possible. Normally, the photons are transmitted in both directions in the photonic waveguide, but in their custom-made photonic chip they could break this symmetry and get the quantum dot to differentiate between emitting a photon right or left, that means emit directional photons. This means full control over the photons and the researchers are beginning to explore how to construct complete quantum network systems based on the new discovery.

"The photons can be sent over long distances via optical fibres, where they whiz through the fibres with very little loss. You could potentially build a network where the photons connect small quantum systems, which are then linked together into a quantum network - a quantum internet," explains Peter Lodahl.

He adds that while the first basic functionalities are already a reality, the great challenge is now to expand them to large, complex quantum networks.
-end-
Watch video: http://www.nbi.ku.dk/english/sciencexplorer/atomic_physics/quantum_photonics/video/

Contact:

Peter Lodahl, Professor, head of the research group Quantum Photonics at the Niels Bohr Institute at the University of Copenhagen. Tel: +45 2056-5303, lodahl@nbi.ku.dk

University of Copenhagen - Niels Bohr Institute

Related Electrons Articles:

Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
New method for detecting quantum states of electrons
Researchers in the Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST) devised a new method -- called image charge detection -- to detect electrons' transitions to quantum states.
Slow electrons to combat cancer
Slow electons can be used to destroy cancer cells - but how exactly this happens has not been well understood.
How light steers electrons in metals
Researchers in the Department of Physics of ETH Zurich have measured how electrons in so-called transition metals get redistributed within a fraction of an optical oscillation cycle.
Twisting whirlpools of electrons
Using a novel approach, EPFL physicists have been able to create ultrafast electron vortex beams, with significant implications for fundamental physics, quantum computing, future data-storage and even certain medical treatments.
Inner electrons behave differently in aromatic hydrocarbons
In an international research collaboration between Tsinghua University in Beijing and Sorbonne University in Paris, scientists found that four hydrocarbon molecules, known for their internal ring structure, have a lower threshold for the release of excess energy than molecules without a similar ring structure, because one of their electrons decays from a higher to a lower energy level, a phenomenon called the Auger effect.
Exotic spiraling electrons discovered by physicists
Rutgers and other physicists have discovered an exotic form of electrons that spin like planets and could lead to advances in lighting, solar cells, lasers and electronic displays.
Racing electrons under control
The advantage is that electromagnetic light waves oscillate at petaherz frequency.
Electrons go with the flow
You turn on a switch and the light switches on because electricity 'flows'.
More Electrons News and Electrons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab