Nav: Home

New study reveals solidification cracking during welding of steel

January 25, 2017

New research led by the University of Leicester has made a novel breakthrough in understanding how solidification cracking occurs during the welding of steel, an important engineering alloy.

In a new study, which has been published in the journal Scientific Reports from Nature Research, the team from the University of Leicester Department of Engineering propose that solidification cracks grow by linking micro-porosities in the meshing zone in the solidifying weld pool.

This is the first time that researchers have observed solidification cracking in steel and sheds new light on why the alloy may crack during the process.

Professor Hong Dong from the University of Leicester Department of Engineering said: "Welding is the most economical and effective way to join metals permanently and it is a vital component of our manufacturing economy.

"It is estimated that more than 50 per cent of global domestic and engineering products contain welded joints. In Europe, the welding industry has traditionally supported a diverse set of companies across the shipbuilding, pipeline, automotive, aerospace, defence and construction sectors. Solidification/hot cracking is the most common failure mode during metal processing, such as welding, casting and metal additive manufacturing (metal 3D printing)."

The team used synchrotron X-ray beamline at the European Synchrotron Radiation Facility (ESRF) to observe the crack formation at the real time.

With modern advances in synchrotron X-ray and imaging techniques, the team was able to see through metals, providing details analysis of the alloy.

Weaknesses in welded parts can have many disastrous effects including putting lives at risk and harming the economy because of damages and insurance payouts for faulty products.

They can also cause environmental catastrophes such as pollution if imperfectly welded parts are used in environmentally sensitive areas such as the ocean.
-end-
The study is part of the team's international EU FP7 project - Mintweld, working with eleven partner originations from 7 EU countries.

The research was funded by an EPSRC industrial CASE project with Tata Steel UK and was also supported by the European Commission as a part of the FP7 programme, Modelling of Interface Evolution in Advanced Welding (MintWeld); Contract No. NMP3-SL-2009-229108.

The paper 'Initiation and growth kinetics of solidification cracking during welding of steel' published by Nature is available here: http://www.nature.com/articles/srep40255

Images demonstrating the research findings are available here: https://www.dropbox.com/sh/0cwr70l73xegbmi/AACIHtj14v0WoMjXtBJpXLpla?dl=0

University of Leicester

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
More Engineering News and Engineering Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...