Nav: Home

New study reveals solidification cracking during welding of steel

January 25, 2017

New research led by the University of Leicester has made a novel breakthrough in understanding how solidification cracking occurs during the welding of steel, an important engineering alloy.

In a new study, which has been published in the journal Scientific Reports from Nature Research, the team from the University of Leicester Department of Engineering propose that solidification cracks grow by linking micro-porosities in the meshing zone in the solidifying weld pool.

This is the first time that researchers have observed solidification cracking in steel and sheds new light on why the alloy may crack during the process.

Professor Hong Dong from the University of Leicester Department of Engineering said: "Welding is the most economical and effective way to join metals permanently and it is a vital component of our manufacturing economy.

"It is estimated that more than 50 per cent of global domestic and engineering products contain welded joints. In Europe, the welding industry has traditionally supported a diverse set of companies across the shipbuilding, pipeline, automotive, aerospace, defence and construction sectors. Solidification/hot cracking is the most common failure mode during metal processing, such as welding, casting and metal additive manufacturing (metal 3D printing)."

The team used synchrotron X-ray beamline at the European Synchrotron Radiation Facility (ESRF) to observe the crack formation at the real time.

With modern advances in synchrotron X-ray and imaging techniques, the team was able to see through metals, providing details analysis of the alloy.

Weaknesses in welded parts can have many disastrous effects including putting lives at risk and harming the economy because of damages and insurance payouts for faulty products.

They can also cause environmental catastrophes such as pollution if imperfectly welded parts are used in environmentally sensitive areas such as the ocean.
-end-
The study is part of the team's international EU FP7 project - Mintweld, working with eleven partner originations from 7 EU countries.

The research was funded by an EPSRC industrial CASE project with Tata Steel UK and was also supported by the European Commission as a part of the FP7 programme, Modelling of Interface Evolution in Advanced Welding (MintWeld); Contract No. NMP3-SL-2009-229108.

The paper 'Initiation and growth kinetics of solidification cracking during welding of steel' published by Nature is available here: http://www.nature.com/articles/srep40255

Images demonstrating the research findings are available here: https://www.dropbox.com/sh/0cwr70l73xegbmi/AACIHtj14v0WoMjXtBJpXLpla?dl=0

University of Leicester

Related Engineering Articles:

Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
Engineering a plastic-eating enzyme
Scientists have engineered an enzyme which can digest some of our most commonly polluting plastics, providing a potential solution to one of the world's biggest environmental problems.
A new way to do metabolic engineering
University of Illinois researchers have created a novel metabolic engineering method that combines transcriptional activation, transcriptional interference, and gene deletion, and executes them simultaneously, making the process faster and easier.
More Engineering News and Engineering Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#543 Give a Nerd a Gift
Yup, you guessed it... it's Science for the People's annual holiday episode that helps you figure out what sciency books and gifts to get that special nerd on your list. Or maybe you're looking to build up your reading list for the holiday break and a geeky Christmas sweater to wear to an upcoming party. Returning are pop-science power-readers John Dupuis and Joanne Manaster to dish on the best science books they read this past year. And Rachelle Saunders and Bethany Brookshire squee in delight over some truly delightful science-themed non-book objects for those whose bookshelves are already full. Since...
Now Playing: Radiolab

An Announcement from Radiolab