Nav: Home

Genome secrets of elusive human malaria species revealed

January 25, 2017

The genomes of the two least common species of human malaria parasites are revealed today in Nature by a team of scientists from the Wellcome Trust Sanger Institute and their international collaborators. These sequences will enable improved surveillance and diagnosis of these rarer parasites that still cause more than 10 million malaria cases every year.

The research has important implications for malaria eradication worldwide, and casts light on a malaria vaccine target.

Malaria is caused by Plasmodium parasites, which are spread to humans by mosquitos. The genomes of three human infective Plasmodium species are relatively well studied, especially P. falciparum, the most common malaria parasite. However, very little was known about Plasmodium malariae and Plasmodium ovale, which are believed to cause up to five per cent of malaria worldwide, corresponding to approximately 10 million cases annually. These species can remain hidden in the host for years.

The researchers determined the genome sequences of these Plasmodium parasite species. By comparing these new genomes with those of the malaria parasites already sequenced, the researchers were able to identify genes that could be involved in human infection and in adapting to the human host. They found that up to 40 per cent of the P. malariae and P. ovale genomes contain genes that are probably involved in evading an immune response.

The study revealed that P. malariae contains two new families of genes that are similar in shape to a vital gene in P. falciparum, known as RH5. This gene is essential for the P. falciparum parasite to invade human red blood cells and is one of the top targets for malaria vaccine design. It is likely that the novel P. malariae genes are also involved in binding to host cell receptors.

Gavin Rutledge, first author on the paper from the Wellcome Trust Sanger Institute, said: "It is really hard to study these parasites because we can't grow them in the lab. Here, we isolated the parasites from blood samples of malaria patients and determined these final Plasmodium genome sequences. This will help us understand the evolution of the Plasmodium species, and maybe even give us an idea which routes to drug resistance these parasites may possess."

Professor James McCarthy from QIMR Berghofer Medical Research Institute, said: "Although they are less lethal than Plasmodium falciparum, the rarer malaria species are likely to be much more difficult to eliminate. Better tools to diagnose these parasites, as well as drugs and vaccines to control them will be essential. These new genomes should now make it possible to develop improved diagnostic tools for these Plasmodium species, to ensure that drugs work against them and to assist vaccine development."

P. ovale actually consists of two distinct species, Plasmodium ovale wallikeri and Plasmodium ovale curtisi. The authors showed that the split between these species was ancient and occurred long before the much more virulent P. falciparum emerged. The researchers also sequenced Plasmodium parasites taken from chimpanzees living in a sanctuary in Gabon. They compared these with the human samples, and existing data from other Plasmodium parasites that also infected chimpanzees, offering insights into how malaria parasites have adapted to different host species.

The new genetic information is already available for other scientists in the malaria research community to use via the Sanger Institute GeneDB database or the European Nucleotide Archive at the European Bioinformatics Institute.

Dr Thomas Dan Otto, lead author from the Sanger Institute, said: "This study provides long awaited reference genomes for the malaria research community. The parasites are present in malaria zones worldwide yet researchers have limited knowledge about their biology. The genomes of these more neglected species will enable the development of tools to study malaria transmission and spread, which will be essential to achieve the goal of complete malaria eradication."
-end-
Notes to editors:

Participating Institutes:
  • Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
  • Malaria Research and Training Center, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
  • Benhard-Nocht Institute for Tropical Medicine, Hamburg, Germany
  • University of Buea, Buea, Cameroon
  • Navrongo Health Research Centre, Navrongo, Ghana
  • Centers for Disease Control and Prevention, Atlanta, Georgia, United States
  • Laboratoire MIVEGEC (UM1-CNRS-IRD), Montpellier, France
  • Centre International de Recherches médicales de Franceville, Gabon
  • Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
  • Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, UK
  • Clinical Tropical Medicine Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
  • Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
  • Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom


Selected websites

QIMR Berghofer Medical Research Institute

QIMR Berghofer is a world-leading medical research institute in Brisbane, Australia. It has established an international reputation for research excellence and consistently rates in Australia's top two medical research institutes. QIMR Berghofer's research is focused on cancer, infectious diseases, mental health and chronic disorders. The institute is conducting clinical trials of promising malaria drugs using funding from Medicines for Malaria Venture (MMV). http://www.qimrberghofer.edu.au/

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Malaria Articles:

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the Umeå University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.
Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.
New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.
Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.
Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.
Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.
Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.
Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.
The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.
Free malaria tests coupled with diagnosis-dependent vouchers for over-the-counter malaria treatment
Coupling free diagnostic tests for malaria with discounts on artemisinin combination therapy (ACT) when malaria is diagnosed can improve the rational use of ACTs and boost testing rates, according to a cluster-randomized trial published this week in PLOS Medicine by Wendy Prudhomme O'Meara of Duke University, USA, and colleagues.
More Malaria News and Malaria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.