Nav: Home

UV laser photolyses to enhance diamond growth

January 25, 2018

Energy influences the rates of chemical reactions dramatically. Simply heating a gas-phase reaction system deposits energy indiscriminately in internal and translational motions of precursor and intermediate molecules. More specific excitations of energy states in the molecules can control the courses of a reaction. Control of chemical reactions is an intriguing concept. The practical reasons for seeking such a control ranging from suppressing unwanted side products to synthesizing new material structures. With the significant advances in laser technology, lasers can now provide unique means of selectively driving chemical reactions by exciting specific transitions in reactant molecules. Ultraviolet photochemistry has long been exploited to gain chemical control in molecular reactions motivated by suppressing side product channels to obtain the desired deposit. However, there have been few successes in practical material synthesis because the photochemical effects have been believed to be too weak. Nevertheless, selectivity among various competing chemical processes in material synthesis is attractive because it enables a better understanding of the reacting channels, leading to process control and improvements.

Researchers at the University of Nebraska-Lincoln, USA, reported on a new laser-enabled synthesis route to explore the advantages of laser photochemistry in practical material synthesis in a recent article in Light: Science & Applications. In this work, it is demonstrated that UV laser photolysis of hydrocarbon species altered the flame chemistry to promote the diamond growth rate and film quality. The authors found that the UV laser photolysis plays a key role in suppressing the formation of the side products, nondiamond carbons. This discovery suggests the great potential of the laser photolysis forsignificantly improving the synthesis of a broad range of technically important materials.
-end-
Reference: http://www.nature-lsa.cn:8080/cms/accessory/files/AAP-lsa2017177.pdf

Changchun Institute of Optics, Fine Mechanics and Physics

Related Chemical Reactions Articles:

Caught on camera -- chemical reactions 'filmed' at the single-molecule level
Scientists have succeeded in 'filming' inter-molecular chemical reactions -- using the electron beam of a transmission electron microscope as a stop-frame imaging tool.
Study: Some catalysts contribute their own oxygen for reactions
New MIT research shows that metal-oxide catalysts can sometimes release oxygen from within their structure, enhancing chemical activity.
Chemists uncover a means to control catalytic reactions
Scientists at the University of Toronto have found a way to make catalysis more selective, breaking one chemical bond 100 times faster than another.
Deep insights from surface reactions
Using the Stampede supercomputer at the Texas Advanced Computing Center, researchers have developed biosensors that can speed up drug development, designed improved materials for desalinization, and explored new ways of generating energy from bacteria.
Scientists trace 'poisoning' in chemical reactions to the atomic scale
A combination of experiments, including X-ray studies at Berkeley Lab, revealed new details about pesky deposits that can stop chemical reactions vital to fuel production and other processes.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
Scientists rev up speed of bionic enzyme reactions
Bionic enzymes got a needed boost in speed thanks to new research at the Berkeley Lab.
Adverse drug reactions may be under-reported in young children
A new study reveals that adverse drug reactions in newborns and infants may be under-reported.
New model predicts once-mysterious chemical reactions
A team of researchers from Los Alamos National Laboratory and Curtin University in Australia developed a theoretical model to forecast the fundamental chemical reactions involving molecular hydrogen.
Syracuse University chemists add color to chemical reactions
Members of the Maye Research Group at Syracuse University have designed a nanomaterial that changes color when it interacts with ions and other small molecules during a chemical reaction.

Related Chemical Reactions Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...