Nav: Home

Proteins' fluorescence a little less mysterious

January 25, 2018

Rice University scientists have effectively quenched a debate over the mechanism behind a fluorescent biosensor that monitors neurons by sensing changes in voltage.

The work led by Rice theoretical chemist Peter Rossky and postdoctoral researcher Lena Simine confirmed through computer simulations their theory that a mechanical process controls the quenching of fluorescence in ArcLight, a synthetic voltage indicator placed within proteins that line the inner membranes of neurons.

Through their models, the researchers coupled both the mechanism and fluorescence to the strength of electric fields they observed across the chromophore, the fluorescing part of the protein. Their results showed a simple measure of the field in a simulation could be used to predict whether and how well new fluorescent sensors will behave before researchers synthesize them, Rossky said.

The study appears in the Journal of the American Chemical Society.

ArcLight, developed by Yale neuroscientist Vincent Pieribone in 2012, is a genetically encoded fluorescence voltage indicator protein. It contains a mutation that makes the fluorescence signal dim when voltage rises and brighten when voltage falls. That makes it useful for tracking signals in the nervous system by expressing the protein in neurons and seeing how they light up.

The protein is tethered to the neuron's cell wall by a voltage-sensing component that moves a few angstroms when a signal from another neuron changes the electrical charge in the membrane. The Rice researchers theorized that motion pulls the protein against the membrane, compressing it and quenching fluorescence.

Rossky said changing the shape of the protein brings two residues a nanometer closer to each other. That's enough to dictate how the chromophore gets rid of energy, either as light (by giving up photons and fluorescing) or as heat.

"We hypothesized what geometry change occurs in the protein as a result of the response of the membrane," Rossky said. "And then we asked, 'Does this change the fluorescence?' And we found that it does. In addition, we showed that monitoring a much simpler quality -- the electric field along two axes where the fluorescence comes from -- is sufficient to completely describe the response."

ArcLight proved to be a good model. Pieribone, a Rice collaborator, told attendees at a 2014 lecture at Rice that even he didn't know exactly how it worked. The lecture inspired Simine, who had just come to Rice, to embark upon a study of the mechanism.

"I thought, 'That sounds like a good project for me,'" she said.

Working with researchers in the group of José Onuchic at Rice's Center for Theoretical Biological Physics (CTBP) allowed Simine, a chemical physicist by training, to take advantage of the center's expertise in simulating proteins for testing.

She said a decadelong debate between scientists failed to determine whether mechanical or electrical properties of proteins caused their fluorescence. It turned out to be a bit of both.

"A recent paper gave computational evidence for it being predominantly electrostatic, and it kind of makes sense because the protein's very soft," Simine said. "We also figured those mutations are sticking to the membrane, and when they do, the protein's orientation allows the protein to be compressed." She found electrostatic changes to the neuronal membrane triggered the physical change that quenches fluorescence, but also left an electrical trace in the protein that could be observed in the simulation.

"We put some thought into it and came up with a reaction coordinate," she said. "We can take any mutation of the sequence of this protein and translate it into two numbers that are the inputs for this model, the electrostatic fields around the chromophore. It's a nice, elegant phenomenological theory."

The lab plans to test its technique on custom-synthesized fluorescent proteins and matching simulations to see if their theory and experimentation continue to align. If they do, they expect their models will be highly useful to synthetic biologists making new classes of fluorescent markers.

"If you want to know the fluorescence from a given molecule, you do the experiment," Rossky said. "But if you want to know why it works, these calculations are incredibly valuable."
-end-
Co-authors of the paper are Rice postdoctoral fellow Heiko Lammert, graduate student Li Sun and Onuchic, Rice's Harry C. and Olga K. Wiess Chair of Physics, a professor of physics and astronomy, and co-director of the CTBP. Rossky is Rice's Harry C. and Olga K. Wiess Chair in Natural Sciences, a professor of chemistry and dean of the Wiess School of Natural Sciences.

The National Science Foundation and its Extreme Science and Engineering Discovery Environment and the CTBP supported the research.

-30-

Read the abstract at http://pubs.acs.org/doi/10.1021/jacs.7b10851

This news release can be found online at http://news.rice.edu/2018/01/24/proteins-fluorescence-a-little-less-mysterious/

Follow Rice News and Media Relations via Twitter @RiceUNews.

Related materials:

Peter Rossky bio: https://naturalsciences.rice.edu/about/dean-peter-j-rossky

Wiess School of Natural Sciences: https://naturalsciences.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,970 undergraduates and 2,934 graduate students, Rice's undergraduate student-to-faculty ratio is just under 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for quality of life and for lots of race/class interaction and No. 2 for happiest students by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Neurons Articles:

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
Shaping the social networks of neurons
Identification of a protein complex that attracts or repels nerve cells during development.
With these neurons, extinguishing fear is its own reward
The same neurons responsible for encoding reward also form new memories to suppress fearful ones, according to new research by scientists at The Picower Institute for Learning and Memory at MIT.
How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Teaching For Better Humans 2.0
More than test scores or good grades–what do kids need for the future? This hour, TED speakers explore how to help children grow into better humans, both during and after this time of crisis. Guests include educators Richard Culatta and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#556 The Power of Friendship
It's 2020 and times are tough. Maybe some of us are learning about social distancing the hard way. Maybe we just are all a little anxious. No matter what, we could probably use a friend. But what is a friend, exactly? And why do we need them so much? This week host Bethany Brookshire speaks with Lydia Denworth, author of the new book "Friendship: The Evolution, Biology, and Extraordinary Power of Life's Fundamental Bond". This episode is hosted by Bethany Brookshire, science writer from Science News.
Now Playing: Radiolab

Dispatch 3: Shared Immunity
More than a million people have caught Covid-19, and tens of thousands have died. But thousands more have survived and recovered. A week or so ago (aka, what feels like ten years in corona time) producer Molly Webster learned that many of those survivors possess a kind of superpower: antibodies trained to fight the virus. Not only that, they might be able to pass this power on to the people who are sick with corona, and still in the fight. Today we have the story of an experimental treatment that's popping up all over the country: convalescent plasma transfusion, a century-old procedure that some say may become one of our best weapons against this devastating, new disease.   If you have recovered from Covid-19 and want to donate plasma, national and local donation registries are gearing up to collect blood.  To sign up with the American Red Cross, a national organization that works in local communities, head here.  To find out more about the The National COVID-19 Convalescent Plasma Project, which we spoke about in our episode, including information on clinical trials or plasma donation projects in your community, go here.  And if you are in the greater New York City area, and want to donate convalescent plasma, head over to the New York Blood Center to sign up. Or, register with specific NYC hospitals here.   If you are sick with Covid-19, and are interested in participating in a clinical trial, or are looking for a plasma donor match, check in with your local hospital, university, or blood center for more; you can also find more information on trials at The National COVID-19 Convalescent Plasma Project. And lastly, Tatiana Prowell's tweet that tipped us off is here. This episode was reported by Molly Webster and produced by Pat Walters. Special thanks to Drs. Evan Bloch and Tim Byun, as well as the Albert Einstein College of Medicine.  Support Radiolab today at Radiolab.org/donate.