Nav: Home

Energy supply channels

January 25, 2018

Researchers at the University of Freiburg have succeeded in describing how so-called beta-barrel proteins are inserted into the membrane of mitochondria. The proteins enable the cells' powerhouses to import and export molecules. With this discovery, the team led by Prof. Dr. Nils Wiedemann and Prof. Dr. Nikolaus Pfanner in cooperation with the group of Prof. Dr. Carola Hunte has been able to clarify a fundamental question of protein biochemistry. The European Research Council (ERC) funded the research with a Consolidator Grant. The scientists have published their findings in the journal Science.

Mitochondria, also known as the cells' powerhouses, contain roughly 1,000 protein molecules that are transported from the cytosol. For this purpose, its outer membrane has protein import channels consisting of molecules with a barrel structure, so-called beta-barrel proteins. In the mitochondria, energy from nutrients is used to produce the cellular energy molecule adenosine triphosphate (ATP). ATP is transported through further barrel pores across the mitochondrial outer membrane into the cytosol, which fuels life of human cells.

About thirty years ago, the group led by Prof. Dr. Georg Schulz at the University of Freiburg elucidated the structure of the beta-barrel membrane proteins: Strands of proteins extending in opposite directions create sheets that form a hollow cylinder by association of the first and last strand. Ever since then, the question has arisen how this class of channel-forming protein molecules is inserted into biological membranes. Subsequently, the sorting and assembling machinery (SAM) was identified in the mitochondrial outer membrane, which is required for the insertion of the barrel proteins. Sam50 is the name of the central subunit of SAM for the formation of beta-barrel proteins. This is the starting point for the current research: Dr. Alexandra Höhr proved experimentally that the last strand of the new protein is introduced between the first and the last strand of the Sam50 beta-barrel with which the membrane insertion begins. Together with Caroline Lindau, she showed that new strands of the new beta-barrel are threaded piece by piece into the lateral opening of Sam50 until the new complete channel is released into the membrane.

Because mitochondria and the photosynthetic chloroplasts are derived from joint bacterial ancestors, the study not only contributes to a better understanding of the formation and function of the cells' powerhouses, but also provides new insights into the formation of chloroplasts and bacteria.
-end-
Nils Wiedemann, Nikolaus Pfanner and Carola Hunte are group leaders at the Institute of Biochemistry and Molecular Biology and members of the Cluster of Excellence BIOSS Centre for Biological Signalling Studies and the Spemann Graduate School for Biology and Medicine at the University of Freiburg.

Original publication:

Alexandra I. C. Höhr, Caroline Lindau, Christophe Wirth, Jian Qiu, David A. Stroud, Stephan Kutik, Bernard Guiard, Carola Hunte, Thomas Becker, Nikolaus Pfanner, Nils Wiedemann: Membrane protein insertion through a mitochondrial β-barrel gate. In: Science 359/6373.

http://science.sciencemag.org/content/359/6373/eaah6834.full

Contact:

Institute for Biochemistry and Molecular Biology
University of Freiburg

University of Freiburg

Related Mitochondria Articles:

Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
Temple researchers identify new target regulating mitochondria during stress
Like an emergency response team that is called into action to save lives, stress response proteins in the heart are activated during a heart attack to help prevent cell death.
Runaway mitochondria cause telomere damage in cells
Targeted damage to mitochondria produces a 'Chernobyl effect' inside cells, pelting the nucleus with harmful reactive oxygen species and causing chromosomal damage.
Interplay between mitochondria and nucleus may have implications for new treatment
Mitochondria, the 'batteries' that produce our energy, interact with the cell's nucleus in subtle ways previously unseen in humans, according to research published today in the journal Science.
Dissolving protein traffic jam at the entrance of mitochondria
Researchers from Freiburg discovered a novel mechanism that ensures obstacle-free protein traffic into the powerhouse of the cell.
More Mitochondria News and Mitochondria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...