Nav: Home

Heart cells sense stiffness by measuring contraction forces and resting tension simultaneously

January 25, 2018

Researchers from Queen Mary University of London have identified a new mechanism in which adhesive structures within the cells of the heart sense stiffness through muscle contractions and resting tension at the same time.

The study, published in Developmental Cell, further shows that the resting tension in the heart cells is increased after a heart attack and other heart diseases. This changes the way that heart cells can sense the stiffness because they lose sensitivity.

This suggests that abnormal mechanosensing and signalling, which occurs when the resting tension is increased, is a contributing factor in the progression of heart disease towards heart failure. When the cells misread the properties of their environment this will lead to heart cells that cannot beat as well.

Lead author Dr Thomas Iskratsch, from Queen Mary's School of Engineering and Materials Science, said: "This study develops our understanding of the disease mechanisms. It shows that changes to the heart after a heart attack contribute to the disease in two ways. On the one hand it changes the mechanical properties of the heart and on the other hand it changes how heart cells measure and respond to these properties."

The stiffness of the cellular environment can guide cellular processes, from cell migration to differentiation or cell death. Many organs change the stiffness during development, ageing or disease. For example the heart becomes stiffer as it is formed in the embryo and it stiffens further in various heart conditions, mainly due to fibrosis.

Such changes in stiffness are known to impact the phenotype - or the look and behaviour - of the heart muscle cells and their ability to beat efficiently. However up until now it was unclear how the cells can measure the stiffness.

By identifying the mechanism in which adhesive structures within cells sense contractions and tension, the researchers found this combination of forces leads to the stretching of talin, a mechanosensitive protein on the intracellular side of the adhesions. Stretching of talin will then initiate a series of events that includes strengthening of the adhesions and signalling to the nucleus to change the cell phenotype.

Depending on the stiffness of the environment, this results in cyclic stretching of talin (when the stiffness is comparable to the healthy adult heart), continuous stretching of talin (when the stiffness is comparable to the diseased, fibrotic heart), or no stretching of talin (when the stiffness is comparable to the embryonic heart). The researchers also found indications for higher resting tension in heart disease, which again will shift the balance from cyclic to continuous stretching of talin.

Dr Iskratsch added: "Further steps are needed to investigate how the different types of talin stretching are translated into changing the cell behaviour. Also, more experiments are needed to observe the changes in mechanical sensing in the diseased heart. Together this will allow the identification of targets for new drugs."
-end-
The research was funded by the British Heart Foundation.

Queen Mary University of London

Related Heart Disease Articles:

Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
Novel heart valve replacement offers hope for thousands with rheumatic heart disease
A novel heart valve replacement method is revealed today that offers hope for the thousands of patients with rheumatic heart disease who need the procedure each year.
Younger heart attack survivors may face premature heart disease death
For patients age 50 and younger, the risk of premature death after a heart attack has dropped significantly, but their risk is still almost twice as high when compared to the general population, largely due to heart disease and other smoking-related diseases The risk of heart attack can be greatly reduced by quitting smoking, exercising and following a healthy diet.
Citrus fruits could help prevent obesity-related heart disease, liver disease, diabetes
Oranges and other citrus fruits are good for you -- they contain plenty of vitamins and substances, such as antioxidants, that can help keep you healthy.
Gallstone disease may increase heart disease risk
A history of gallstone disease was linked to a 23 percent increased risk of developing coronary heart disease.
Americans are getting heart-healthier: Coronary heart disease decreasing in the US
Coronary heart disease is one of the leading causes of death in the United States.

Related Heart Disease Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".