Nav: Home

The bacterial 'Game of Thrones'

January 25, 2018

Much like animals and to a degree humans, bacteria enjoy a good fight. They stab, shove and poison each other in pursuit of the best territory. While this much is clear, little is known about the tactics and strategy that bacteria use during their miniature wargames.

In a study published in Current Biology, researchers at the University of Oxford have shed light on this area of bacterial behaviour, revealing that bacteria approach conflict in much the same way as an army by responding to a threat with a coordinated, collective retaliation.

The team studied pairs of Escherichia coli strains as they fought against each other. Each strain uses a particular toxin to try to overcome its competitor. A strain is immune to its own toxins, but it can kill other strains. This type of competitive interaction plays a key role in how individual bacteria establish themselves in a community, such as the human gut. By engineering the strains to have a fluorescent-green colour, the authors were able to clearly follow their combat in real time.

The findings revealed that not all strains of bacteria fight the same way. Each approaches conflict with a different level of attack, some being hyper-aggressive and others much more passive. In addition to these basic differences in aggression, the research also shows that some strains can not only detect an attack from an incoming toxin, but they can also respond quickly to warn the rest of the colony. Cells on the edge of the colony will detect the incoming attack, and share this information with the cells behind the battlefront, allowing them to respond as a collective, in a coordinated and surprisingly sophisticated fashion.

While these phenomena are well known in animals, the study is a first of its kind for observing this behaviour in bacteria. Professor Kevin Foster, senior author on the work and Professor of Evolutionary Biology in the Department of Zoology at the University of Oxford, said: 'Our research shows that what appear to be simple organisms can function in a very sophisticated manner. Their behaviour is more complex than we have previously given them credit for. Much like social insects, such as honey bees and wasps and social animals like birds and mammals who use alarm calls, when under predation, they are capable of generating a coordinated attack'.

Since the human body plays host to vast numbers of bacteria, particularly our gut microbiome, this effectively means that there is a bacterial war going on inside us. Understanding bacterial competition can help us to understand how bacteria spread, where and why. Professor Foster explains: 'We know from other studies that toxins are important for whether or not a particular strain will establish in a community. But understanding how bacteria release toxins and out-compete others is very important for understanding the spread of infection.'

The team are in the process of building on this work to understand how bacteria can use toxins to provoke and misdirect aggression in their opponents. Dr Despoina Mavridou, one of the lead authors on the study, said: 'Warfare based on provocation can be beneficial. It is most likely taking place in the gut, where bacteria may provoke multiple opponents to attack and wipe out each other.'
-end-
Notes to editors:

The paper will appear online at this link when the embargo lifts: http://www.cell.com/current-biology/fulltext/S0960-9822(17)31663-9 and the DOI will be: 10.1016/j.cub.2017.12.030

The study's other authors are Dr Diego Gonzalez Molecular Biologist at Oxford's Foster Lab in the Department of Zoology (lead author), Dr Wook Kim, Assistant Professor at Duquesne University and Professor Stuart West, Professor of Evolutionary Biology at Oxford's Department of Zoology.

For further information please contact Lanisha Butterfield, Media Relations Manager at Oxford University, on 01865 280531 or email lanisha.butterfield@admin.ox.ac.uk

FIGURES

Fig1. Two bacterial colonies fighting on solid media using toxins. Upon detecting an incoming attack from the red strain, cells of the bottom strain pass this information on to others in the colony leading to a massive collective attack against the red strain. Green colour indicates toxin production.

Video showing two strains fighting: https://www.youtube.com/watch?v=pg6WUDn16Us&feature=youtu.be

Two bacterial colonies fighting on solid media using toxins. These strains can detect the attack of the other, and pass the information on within their colony, to launch massive coordinated attacks on each other. This results in a "no man's land" in between the two strains where cells are killed (with the exception of a few resistant cells that grow into new little colonies). Strains are fluorescently labelled and they turn green when they are releasing toxins. Video edited with the help of Dr Patricia Bernal, Imperial College London.

University of Oxford

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.