Nav: Home

Discovery offers new genetic pathway for injured nerve regeneration

January 25, 2018

On the hunt for genes involved in regenerating critical nerve fibers called axons, biologists at the University of California San Diego came away with a surprise: The discovery of a new genetic pathway that carries hope for victims of traumatic injuries--from stroke to spinal cord damage.

UC San Diego Biological Sciences Assistant Project Scientist Kyung Won Kim, Professor Yishi Jin and their colleagues conducted a large-scale genetic screening in the roundworm C. elegans seeking ultimately to understand genetic influences that might limit nerve regrowth in humans. Unexpectedly, the researchers found the PIWI-interacting small RNA (piRNA) pathway--long believed to be restricted to function in the germline--plays an active role in neuron damage regeneration.

The discovery is published online Jan. 25, 2018 in the journal Neuron.

"This came as a total surprise," said Jin, Chair of the Section of Neurobiology, Division of Biological Sciences, and a member of the Department of Cellular and Molecular Medicine in UC San Diego's School of Medicine. "piRNA wasn't anywhere on our radar, but now we are convinced that it is a new pathway that functions in neurons and, with some work, could offer therapeutic targets for helping neurons do better against injury."

Axons are long, threadlike extensions of nerve cells that transmit electric and chemical signals from one cell to another. Jin's research focuses on discovering new targets to help axons regenerate, especially from injuries thought to be irreversible such as in vehicle accidents, sports injuries, spinal cord damage and from stroke.

Although no cures exist for many of these injuries, if the damaged neurons do not die, "there is hope to find ways to make them stronger and help them regrow," said Jin.

Jin and Kim said that piRNA was historically viewed as a defense mechanism for germ cells against transposable elements, with no role in the nervous system. After identification in their genetic screening, the researchers went on to study piRNA's role in axon injuries through experiments using a femtosecond laser instrument, which emits ultrafast pulses to allow precise cuts in axons. When Kim first presented her data implicating piRNA in restricting axon growth, Jin said the results seemed improbable. Eventually the results proved irrefutable, especially when the researchers knocked out a fleet of genes necessary for piRNA production and found that a damaged roundworm axon regrew better.

"For us this finding is totally unexpected," said Kim. "We are now investigating detailed mechanisms that regulate the pathway to inhibit axon regeneration, including identifying specifically which piRNA elements are involved and how they function in axon regrowth."
-end-
The paper was coauthored by Ngang Heok Tang, Matthew Andrusiak, Zilu Wu and Andrew Chisholm of the Division of Biological Sciences.

University of California - San Diego

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".