Nav: Home

Humans get in the way of mammal movement

January 25, 2018

Humans modify natural landscapes in a variety of ways, from constructing expansive cityscapes to fencing off otherwise untouched rangeland. A new study, co-authored by biologists at the University of Maryland, describes the extent to which highly modified landscapes impede the movement of 57 land-based mammal species from around the world. On average, these mammals cover about a third to half of the distance they would otherwise travel in wild, unmodified landscapes.

An international team of more than 100 co-authors published its findings in the January 26, 2018 issue of the journal Science. While many previous studies have examined individual species at local and regional scales, the new work is the first to integrate many species across the globe in a single analysis. According to the researchers, their findings could have far-reaching consequences for ecosystems and, as a result, for human society.

"The magnitude of the effects we observed was really surprising. The reduction of movement on a 10-day scale, that percentage drop was just phenomenal. In some cases, we saw a tenfold decrease in movement," said William Fagan, professor and chair of the UMD Department of Biology and a co-author of the study. "This is after accounting for other factors we already know to be important to animal movement, such as body size, diet and available food resources."

Most mammals are on the move every day, searching for food, shelter or a mate. In general, larger mammals like zebra move longer distances, while smaller mammals such as hares cover shorter distances. In this study, the researchers collated GPS-tracked movement data from 803 individual animals representing 57 mammal species from around the globe. They used the data portal, Movebank, which archives movement data from researchers across the world.

The researchers then compared these movement data to a metric called the Human Footprint Index, which assigns landscapes a rating that ranges from zero (untouched natural areas) to 50 (dense urban cityscapes). The researchers' analysis primarily focused on areas with a rating of 36 or higher, comparing these data with baseline information from areas with an index of less than two.

The team also assessed each species' movements on a variety of time scales ranging from an hour to 10 days. On shorter time scales of less than a day, human-modified landscapes did not significantly affect the movement of most species. However, for observations ranging from a day to 10 days, most species reduced their travel distances by an average of at least half.

Human infrastructure such as roads, buildings, bridges and fences create physical barriers to animal movement. But the research also suggests another, somewhat paradoxical reason that mammals move less in human-dominated areas: resources such as food and shelter can be more plentiful.

"Our research suggests that two things are going on," said Eliezer Gurarie, a principal faculty specialist in the UMD Department of Biology and a co-author of the paper. "First, the world isn't as free to move around in. But for many animals it's also less necessary to range widely because humans can indirectly provide food and protection from large predators."

Gurarie points to the high numbers of white-tailed deer familiar to anyone in the Washington, D.C. metro area, coyotes found within the borders of Chicago, and fishers--a relative of weasels and ferrets--which are native to Canada and the northern United States.

"It was long thought that fishers needed old-growth forest to thrive," Gurarie said. "But fishers are doing extremely well, for example, around Albany, New York, where there are a lot of naïve squirrels and rabbits that don't know to avoid this predator."

Urban-dwelling fishers, much like urban deer and coyote, typically have much smaller home ranges than their counterparts in wild areas.

While some species can cope with reduced movement in less wild landscapes, the researchers note that movement is also important for the ecosystem as a whole. Restricted movement can disrupt food webs, curtail the distribution of plant seeds and interfere with the transport of nutrients contained in animal waste and prey kills.

"It is important that animals move, because in moving they carry out important ecological functions like transporting nutrients and seeds between different areas," said Marlee Tucker, lead author of the study and a biologist at the Senckenberg Biodiversity and Climate Research Centre and Goethe University in Frankfurt, Germany. "If mammals move less this could alter any of these ecosystem functions."

Wild mammals can also clash with humans, causing problems that can range from unwanted grazing in crops and gardens to the spread of deadly diseases. Fortunately, land-use planners and developers can implement strategies to minimize conflicts.

"Concentrating development in certain areas can preserve more open space. It's also possible to leave corridors open for movement," said Fagan, who is also a research innovation scholar at the National Socio-Environmental Synthesis Center (SESYNC). "These corridors can be as simple as a tunnel under a road. Such measures allow mammals to live in the same landscape without suffering from reduced movement."

Fagan, Gurarie, Tucker and their colleagues note that the current study, while impressive in scope, is likely only the first of its kind. With access to large amounts of high-quality, globe-spanning data contained in public databases like Movebank, ecologists are keen to continue large-scale, data-driven studies on animal movement.

"This idea of compiling data on animal movement will open the door to new studies that include new species and that look for patterns and similarities in data," Fagan explained. "It creates opportunities to look more generally at how animal movement affects other environmental features. Some questions can only be asked by gathering together a lot of data. This is one of them."
In addition to Fagan and Gurarie, UMD-affiliated co-authors of the research paper include visiting graduate student Nina Attias, biology principal faculty specialist Christen Fleming, biological sciences graduate student Edward Hurme, and former graduate students Justin Calabrese (Ph.D. '05, behavior, ecology, evolution, systematics) and Thomas Mueller (Ph.D. '08, behavior, ecology, evolution, systematics).

The research paper, "Global reductions in terrestrial mammalian movements in human-dominated landscapes," Marlee Tucker, Katrin Böhning-Gaese, William Fagan, et al., was published January 26, 2018 in the journal Science.

This work was supported by the Robert Bosch Foundation; the Goethe International Postdoctoral Programme; the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (Award No. FP7/2007-2013/[291776]); the German Research Foundation (Award Nos. FR 3246/2-1, AOBJ 576687 and 2118/1 BioMove); the French National Research Agency (Award Nos. ANR FEAR, ANR SAVARID and ANR-16 -CE02-0010-02); the U.S. National Science Foundation (Award Nos. ABI-1458748, 0963022, 1255913, DEB-LTREB 1556248, DDIG 0608467, 1564380, BCS 99-03949 and BCS 1266389); the Irish Research Council (Award No. GOIPD/2015/81); NASA (Award Nos. NNX15AV92 and NNX11AP61G); the Research Council of Norway (Award No. 251112); the GLOBE Project (POL-NOR/198352/85/2013); the University of California, Berkeley Museum of Vertebrate Zoology; the American Society of Mammalogists; the Leverhulme Study Abroad Studentship and ERC (Award No. 323401); the Copenhagen Zoo; the Danish Environmental Protection Agency; the Juni Charity Foundation; the Portuguese Fundação para a Ciência e Tecnologia (Award No. SFRH/BPD/111084/2015); Save the Elephants; the Spanish Ministry of Economy and Competitiveness (Award No. IJCI-2014-19190); the L.S.B. Leakey Foundation; and the University of California, Davis, Committee on Research. The content of this article does not necessarily reflect the views of these organizations.

Media Relations Contact: Matthew Wright, 301-405-9267,

University of Maryland
College of Computer, Mathematical, and Natural Sciences
2300 Symons Hall
College Park, MD 20742

About the College of Computer, Mathematical, and Natural Sciences

The College of Computer, Mathematical, and Natural Sciences at the University of Maryland educates more than 9,000 future scientific leaders in its undergraduate and graduate programs each year. The college's 10 departments and more than a dozen interdisciplinary research centers foster scientific discovery with annual sponsored research funding exceeding $175 million.

University of Maryland

Related Biology Articles:

A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
Cell biology: Take the mRNA train
Messenger RNAs bearing the genetic information for the synthesis of proteins are delivered to defined sites in the cell cytoplasm by molecular motors.
Gravitational biology
Akira Kudo at Tokyo Institute of Technology(Tokyo Tech) and colleagues report in Scientific Reports, December 2016, that live-imaging and transcriptome analysis of medaka fish transgenic lines lead to immediate alteration of cells responsible for bone structure formation.
Biology's 'breadboard'
Understanding how the nervous system of the roundworm C. elegans works will give insights into how our vastly more complex brains function and is the subject of a paper in Nature Methods.
The use of Camelid antibodies for structural biology
The use of Camelid antibodies has important implications for future development of reagents for diagnosis and therapeutics in diseases involving a group of enzymes called serine proteases.
Misleading images in cell biology
Virtually all membrane proteins have been reported to be organized as clusters on cell surfaces, when in fact many of them are just single proteins which have been counted multiple times.

Related Biology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...