Nav: Home

Quantum race accelerates development of silicon quantum chip

January 25, 2018

The worldwide race to create more, better and reliable quantum processors is progressing fast, as a team of TU Delft scientists led by Professor Vandersypen has realised yet again. In a neck-and-neck race with their competitors, they showed that quantum information of an electron spin can be transported to a photon, in a silicon quantum chip. This is important in order to connect quantum bits across the chip and allowing to scale up to large numbers of qubits. Their work was published today in the journal Science.

The quantum computer of the future will be able to carry out computations far beyond the capacity of today's computers. Quantum superpositions and entanglement of quantum bits (qubits) make it possible to perform parallel computations. Scientists and companies worldwide are engaged in creating increasingly better quantum chips with more and more quantum bits. QuTech in Delft is working hard on several types of quantum chips.

Familiar material

The core of the quantum chips is made of silicon. "This is a material that we are very familiar with," explains Professor Lieven Vandersypen of QuTech and the Kavli Institute of Nanoscience Delft, "Silicon is widely used in transistors and so can be found in all electronic devices." But silicon is also a very promising material for quantum technology. PhD candidate Guoji Zheng: "We can use electrical fields to capture single electrons in silicon for use as quantum bits (qubits). This is an attractive material as it ensures the information in the qubit can be stored for a long time."

Large systems

Making useful computations requires large numbers of qubits and it is this upscaling to large numbers that is providing a challenge worldwide. "To use a lot of qubits at the same time, they need to be connected to each other; there needs to be good communication", explains researcher Nodar Samkharadze. At present the electrons that are captured as qubits in silicon can only make direct contact with their immediate neighbours. Nodar: "That makes it tricky to scale up to large numbers of qubits."

Neck-and-neck race

Other quantum systems use photons for long-distance interactions. For years, this was also a major goal for silicon. Only in recent years have various scientists made progress on this. The Delft scientists have now shown that a single electron spin and a single photon can be coupled on a silicon chip. This coupling makes it possible in principle to transfer quantum information between a spin and a photon. Guoji Zheng: "This is important to connect distant quantum bits on a silicon chip, thereby paving the way to upscaling quantum bits on silicon chips."

On to the next step

Vandersypen is proud of his team: "My team achieved this result in a relatively short time and under great pressure from worldwide competition." It is a true Delft breakthrough: "The substrate is made in Delft, the chip created in the Delft cleanrooms, and all measurements carried out at QuTech," adds Nodar Samkharadze. The scientists are now working hard on the next steps. Vandersypen: "The goal now is to transfer the information via a photon from on electron spin to another."
-end-
This research was funded by an ERC Synergy Grant, NWO via the Nanofront Program and Intel.

In a separate study published in the same issue of Science today, other researchers from the Kavli institute of Nanoscience at TU Delft also found a way to transfer spin information to photons. Read the press release about this related research here.

Delft University of Technology

Related Quantum Information Articles:

The multi-colored photons that might change quantum information science
With leading corporations now investing in highly expensive and complex infrastructures to unleash the power of quantum technologies, INRS researchers have achieved a breakthrough in a light-weight photonic system created using on-chip devices and off-the-shelf telecommunications components.
Celebrating a high performing new journal in quantum information
UNSW Sydney is proud of the early publication performance, influence and reach of its Nature Partner Journal npj Quantum Information, from advancing discovery to affecting public discourse.
Quantum nanoscope
Researchers have studied how light can be used to 'see' the quantum nature of an electronic material.
Testing quantum field theory in a quantum simulator
Quantum field theories are often hard to verify in experiments.
Looking for the quantum frontier
Researchers have developed a new theoretical framework to identify computations that occupy the 'quantum frontier' -- the boundary at which problems become impossible for today's computers and can only be solved by a quantum computer.
Information avoidance
People deliberately avoid information that threatens their happiness and wellbeing.
More reliable way to produce single photons for quantum information imprinting
Physicists at the University of Bath have developed a technique to more reliably produce single photons that can be imprinted with quantum information.
New quantum states for better quantum memories
How can quantum information be stored as long as possible?
Tracking the flow of quantum information
A Yale-led group of researchers has derived a formula for understanding where quantum objects land when they are transmitted.
Breakthrough in the quantum transfer of information between matter and light
From stationary to flying qubits at speeds never reached before...This feat, achieved by a team from Polytechnique Montréal and France's Centre national de la recherche scientifique, brings us a little closer to the era when information is transmitted via quantum principles.

Related Quantum Information Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".