Nav: Home

Tiny particles have outsize impact on storm clouds, precipitation

January 25, 2018

Tiny particles fuel powerful storms and influence weather much more than has been appreciated, according to a study in the Jan. 26 issue of the journal Science.

The research focuses on the power of minute airborne particles known as aerosols, which can come from urban and industrial air pollution, wildfires and other sources. While scientists have known that aerosols may play an important role in shaping weather and climate, the new study shows that the smallest of particles have an outsize effect: Particles smaller than one-thousandth the width of a human hair can cause storms to intensify, clouds to grow and more rain to fall.

The tiny pollutants - long considered too small to have much impact on droplet formation - are, in effect, diminutive downpour-makers.

"We showed that the presence of these particles is one reason why some storms become so strong and produce so much rain. In a warm and humid area where atmospheric conditions are otherwise very clean, the intrusion of very small particles can make quite an impact," said Jiwen Fan of the Department of Energy's Pacific Northwest National Laboratory, who is lead author of the paper in Science. Fan led 21 authors from 15 institutions around the world to do the study.

The findings are based largely on unique data made possible by the GoAmazon research campaign, where scientists made ground-based and airborne measurements related to climate during 2014-2015. The campaign was run by the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy Office of Science user facility.

The study capitalized on data from an area of the Amazon that is pristine except for the region around Manaus, the largest city in the Amazon, with a population of more than 2 million people. The setting gave scientists the rare opportunity to look at the impact of pollution on atmospheric processes in a largely pre-industrial environment and pinpoint the effects of the particles apart from other factors such as temperature and humidity.

In this study, scientists studied the role of ultrafine particles less than 50 nanometers wide in the development of thunderstorms. Similar but larger particles are known to play a role in feeding powerful, fast-moving updrafts of air from the land surface to the atmosphere, creating the clouds that play a central role in the formation of water droplets that fall as rain.

But scientists had not observed - until now - that smaller particles below 50 nanometers, such as particles produced by vehicles and industrial processes, could do the same. Not only that. The new study revealed that these particles, whose effects on clouds have been mostly neglected until now, can invigorate clouds in a much more powerful way than their larger counterparts.

Through detailed computer simulations, the scientists showed how the smaller particles have a powerful impact on storm clouds.

It turns out that when larger particles aren't present high in a warm and humid environment, it spells opportunity for the smaller particles to act and form cloud droplets. The low concentration of large particles contributes to high levels of excessive water vapor, with relative humidity that can go well beyond 100 percent. That's a key condition spurring ultrafine particles to transform into cloud droplets.

While the particles are small in size, they are large in number, and they can form many small droplets on which the excess water vapor condenses. That enhanced condensation releases more heat, and that heat makes the updrafts much more powerful: More warm air is pulled into the clouds, pulling more droplets aloft and producing more ice and snow pellets, lightning, and rain.

The result: "Invigorated convection," as Fan says - and stronger storms.

"We've shown that under clean and humid conditions, like those that exist over the ocean and some land in the tropics, tiny aerosols have a big impact on weather and climate and can intensify storms a great deal," said Fan, an expert on the effects of pollution on storms and weather. "More broadly, the results suggest that from pre-industrial to the present day, human activity possibly may have changed storms in these regions in powerful ways."
-end-
In addition to scientists from PNNL, the paper includes authors from the Hebrew University of Jerusalem, the University of Maryland, Brookhaven National Laboratory, Beijing Normal University, the Instituto Nacional de Pesquisas Espaciais in Brazil, Harvard University, the Beijing Municipal Weather Modification Office, the Universidade de São Paulo in Brazil, the Chinese Academy of Meteorological Sciences, the Federal University of Alagoas in Brazil, the Max Planck Institute for Chemistry, Johannes Gutenberg University in Germany, and Amazonas State University in Brazil.

The work was supported by the Department of Energy's Office of Science and other organizations.

Reference:


Jiwen Fan, Daniel Rosenfeld, Yuwei Zhang, Scott E. Giangrande, Zhanqing Li, Luiz A.T. Machado, Scot T. Martin, Yan Yang, Jian Wang, Paulo Artaxo, Henrique M.J. Barbosa, Ramon C. Braga, Jennifer M. Comstock, Zhe Feng, Wenhua Gao, Helber B. Gomes, Fan Mei, Christopher Pöhlker, Mira L. Pöhlker, Ulrich Pöschl, and Rodrigo A.F. de Souza, Substantial convection and precipitation enhancements by ultrafine aerosol particles, Science, Jan. 26, 2018, http://dx.doi.org/10.1126/science.aan8461. (URL active once embargo lifts)

DOE/Pacific Northwest National Laboratory

Related Aerosols Articles:

Human activities worsen air quality in Dunhuang, a desert basin in China
Due to the increasing contribution of human activities, air quality has become worse in the most recent decade over the Dunhuang area, and the main reason is a shift to a mixture of coarse and fine particles, having previously been due to dust aerosol alone.
Role aerosols play in climate change unlocked by spectacular Icelandic volcanic eruption
A spectacular six-month Icelandic lava field eruption could provide the crucial key for scientists to unlock the role aerosols play in climate change, through their interactions with clouds.
Large volcanic eruption may have caused the first mass extinction
Researchers say they may have found the cause of the first mass extinction of life.
Biological activity found to affect aerosols produced from sea spray
Chemists have discovered that tiny particulate matter called aerosols lofted into the atmosphere by sea spray and the bursting of bubbles at the ocean's surface are chemically altered by the presence of biological activity.
Exploring ocean waters to characterize atmospheric aerosols
Aerosols play a major role in cloud formation, with a strong impact on climate models.
Air pollution may have masked mid-20th Century sea ice loss
Humans may have been altering Arctic sea ice longer than previously thought, according to researchers studying the effects of air pollution on sea ice growth in the mid-20th Century.
Rocky mountain haze
University of Utah atmospheric scientist Gannet Hallar and colleagues find a correlation between the severity of drought in the Intermountain West and the summertime air quality, particularly the concentration of aerosol particles, in remote mountain wilderness regions.
New insights into how black carbon aerosols impact the atmospheric boundary layer
It is widely known that soot particles emitted from South Asia are spread across the northern Indian Ocean during the winter monsoon season.
Aerosol emissions in East Asia driven by consumption in developed countries
Much of the influence on climate from air pollution in East Asia is driven by consumption in the developed countries of Western Europe and North America, according to research co-led by McGill University atmospheric scientist Yi Huang.
Aerosols strengthen storm clouds, according to new study
An abundance of aerosol particles in the atmosphere can increase the lifespans of large storm clouds by delaying rainfall, making the clouds grow larger and live longer, and producing more extreme storms, according to new research from the University of Texas at Austin.

Related Aerosols Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".