Nav: Home

Do our mitochondria run at 50 degrees C?

January 25, 2018

Our body temperature is held at a fairly steady 37.5°C, and the assumption has always been that most of our physiological processes take place at this temperature. The heat needed to maintain this temperature in the face of a colder environment is generated by tiny subcellular structures called mitochondria. But a new study publishing January 25 in the open access journal PLOS Biology by INSERM and CNRS researchers at Hôpital Robert Debré in Paris led by Dr Pierre Rustin (and their international collaborators from Finland, South Korea, Lebanon and Germany) presents surprising evidence that mitochondria can run more than 10°C hotter than the body's bulk temperature, and indeed are optimized to do so. Because of the extraordinary nature of these claims, PLOS Biology has commissioned a cautionary accompanying article by Professor Nick Lane from University College, London, an expert on evolutionary bioenergetics.

To ensure a stable internal temperature, the human body makes use of the heat produced by the last stage of food consumption: combustion of nutrients in structures known as mitochondria, of which there are tens or hundreds in each cell. Mitochondria form a complex network within the cell, and their contents are isolated from the rest of the cell by two membranes. A considerable number of biologically catalyzed chemical reactions take place in their interior; 40% of the energy that they release is captured in the form of a chemical compound, ATP, which is used to drive functions of the body such as heart beats, brain activity or muscle contraction. The remaining 60%, however, is dissipated as heat.

The authors' results appear to show that, in maintaining our body at a constant temperature of 37.5°C, mitochondria operate much like thermostatic radiators in a poorly insulated room, running at a much higher temperature than their surroundings.

This work was made possible by the use of a chemical probe whose fluorescence is particularly sensitive to temperature. When this "molecular thermometer" (Mito Thermo Yellow) was introduced into the heart of the mitochondria, they were able to demonstrate a stabilized temperature of about 50°C. Specifically, the probe's fluorescence suggested that the temperature of the mitochondria in living and intact cells, themselves placed in a culture medium maintained at 38°C, is more than 10°C higher, as long as the mitochondria are functional. This elevated temperature is abolished when the mitochondria are inactivated by various means. The researchers also showed that several human mitochondrial enzymes have evolved an optimum temperature close to 50°C, which helps to support their interpretation of the molecular thermometer data.

Nick Lane, who was not involved in the study, but helped the journal to assess the manuscript, finds the results potentially exciting, but warns that further work needs to be done. In his accompanying Primer, he says "This is a radical claim, and if it is true, how come we didn't know something so important long ago?"

Lane asks a battery of questions about the Mito Thermo Yellow probe, about the plausibility of the extreme temperature gradients which the authors' interpretation imply, and about the meaning of the very concept of "temperature" at such microscopic scales. "We need to know a lot more about both the specific behaviour of Mito Thermo Yellow and its exact location within the mitochondrion before we can come to any firm conclusions about 'temperature'. In the meantime, I doubt that the 10°C temperature difference should be taken literally. But it should be taken seriously."

The authors acknowledge that these high temperatures at the core of the micro-space inside mitochondria are unexpected but emphasize that this revelation should lead to a reassessment of our vision of how mitochondria function and their role in cells. "Much of our knowledge about mitochondria, the activity of their enzymes, the permeability of their membranes, the consequences of genetic defects that impair their activity, the effect of toxins or drugs, have all been established at 37.5°C; the temperature of the human body, certainly, but apparently not that of the mitochondria," they say.

"Heat has fallen out of fashion in biology. Whether or not all these ideas are correct, the distribution and heat generation of mitochondria within cells should be taken much more seriously. These researchers bring this important subject back to centre stage, which is exactly where it should be," concludes Lane.
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology:

Article:http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2003992

Primer:http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.2005113

Citation:

Article: Chrétien D, Bénit P, Ha H-H, Keipert S, El-Khoury R, Chang Y-T, et al. (2018) Mitochondria are physiologically maintained at close to 50°C. PLoS Biol 16(1): e2003992. https://doi.org/10.1371/journal.pbio.2003992

Primer: Lane N (2018) Hot mitochondria? PLoS Biol 16(1): e2005113. https://doi.org/10.1371/journal.pbio.2005113

Funding:

Article: European Research Council (grant number 232738). Received by HTJ. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Academy Professorship (grant number 256615). Received by HTJ. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Academy of Finland (grant number FinMIT CoE 272376). Received by HTJ. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Ouvrir Les Yeux (OLY). To PB and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Association Française contre l'Ataxie de Friedreich (AFAF) (grant number). To PB and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Association contre les Maladies Mitochondriales (AMMi). To DC, PB, MR, and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Association d'Aide aux Jeunes Infirmes (AAJI). To PB and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. E-Rare (grant number E-rare Genomit). To DC, PB, MR, and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ANR (grant number ANR MITOXDRUGS-DS0403). To DC, PB, MR, and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. ANR (grant number ANR FIFA2-12-BSV1-0010). To DC, PB, MR, and PR. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Primer: The author(s) received no specific funding for this work.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Mitochondria Articles:

Mitochondria-targeted antioxidant SkQ1 helps to treat diabetic wounds
Members of the Faculty of Biology and A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University, have tested on a mouse model a mitochondria-targeted antioxidant, helping to treat diabetic wounds.
Mitochondria targeting anti-tumor compound
Researchers from Kumamoto University in Japan have found that the compound folic acid-conjugated methyl-BETA-cyclodextrin (FA-M-BETA-CyD) has significant antitumor effects on folate receptor-ALPHA-expressing (FR-ALPHA (+)) cancer cells.
Closing the gate to mitochondria
A team of researchers develops a new method that enables the identification of proteins imported into mitochondria.
Elucidated connection between renal failure and 'bad' mitochondria described
Biologists from the A.N. Belozersky Institute of Physico-Chemical Biology, a unit of the Lomonosov Moscow State University suggested the approach to prevent kidney injury after ischemia.
How exercise -- interval training in particular -- helps your mitochondria stave off old age
Researchers have long suspected that the benefits of exercise extend down to the cellular level, but know relatively little about which exercises help cells rebuild key organelles that deteriorate with aging.
Cell disposal faults could contribute to Parkinson's, study finds
A fault with the natural waste disposal system that helps to keep our brain cell 'batteries' healthy may contribute to neurodegenerative disease, a new study has found.
Sex cells evolved to pass on quality mitochondria
Mammals immortalize their genes through eggs and sperm to ensure future generations inherit good quality mitochondria to power the body's cells, according to new UCL research.
Newly identified pathway in mitochondria fuels tumor progression across cancer types
Scientists at The Wistar Institute have identified a novel protein pathway across several types of cancer that controls how tumor cells acquire the energy necessary for movement, invasion and metastasis.
Collapse of mitochondria-associated membrane in ALS
Mitochondria-associated membrane (MAM) is a contacting site of endoplasmic reticulum and mitochondria, and plays a key role in cellular homeostasis.
New research on the muscles of elite athletes: When quality is better than quantity
A Danish-Swedish research team working on a project led by University of Southern Denmark has discovered that muscle endurance is not only determined by the number of mitochondria, but also their structure.

Related Mitochondria Reading:

Mitochondria and the Future of Medicine: The Key to Understanding Disease, Chronic Illness, Aging, and Life Itself
by Lee Know (Author)

Mitochondria in Health and Disease: Personalized Nutrition for Healthcare Practitioners
by Ray Griffiths (Author), Lorraine Nicolle (Foreword)

Mitochondrial theory of aging : to be or not to be ? (The role of Linoleic acid)

Mitochondria (Cold Spring Harbor Perspectives in Biology)
by Douglas C. Wallace (Author), Richard J. Youle (Author)

Minding My Mitochondria 2nd Edition: How I overcame secondary progressive multiple sclerosis (MS) and got out of my wheelchair.
by Terry L. Wahls (Author), Tom Nelson (Illustrator)

Your Mitochondria: Key to Health and Longevity

Mighty Mito: Power Up Your Mitochondria for Boundless Energy, Laser Sharp Mental Focus and a Powerful Vibrant Body
by Wellness For Life Press

Mitochondria
by Immo E. Scheffler (Author)

Diagnosis and Treatment of Chronic Fatigue Syndrome and Myalgic Encephalitis, 2nd ed.: It's Mitochondria, Not Hypochondria
by Dr. Sarah Myhill (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".