Nav: Home

Cellular stress at the movies

January 25, 2019

Much like our fight-or-flight response, our cells also have a stress autopilot mode. An oxygen dropoff, overheating, or an invading toxin can trigger the cellular stress response - a cascade of molecular changes that are the cell's last-ditch effort to survive.

Among these survival strategies is the formation of "stress granules" - proteins and RNA molecules huddle together into membrane-less blobs when the cell is threatened. RNA is the essential biological molecule that translates genetic information from DNA to make proteins. During cellular stress, most RNA molecules stop their normal business of translation and cluster inside stress granules, as if running to hide.

In a new experiment published in Nature Cell Biology, biological imaging experts led by Tim Stasevich, assistant professor in the Department of Biochemistry and Molecular Biology at Colorado State University, have used a custom fluorescence microscope and a novel antibody tagging tool to watch living cells undergoing stress. With single-molecule precision, the researchers have captured individual RNA molecules interacting with stress granules, revealing how, when and where the RNAs move around - a process never before witnessed from start to finish. They have shown definitively, among other things, that RNA translation is completely silenced before the RNAs enter the stress granules.

The results sprung from a partnership with the lab of Roy Parker, professor in the Department of Biochemistry at University of Colorado Boulder. The two labs' combined expertise has illuminated unprecedented details of the cellular stress response, paving the way for future studies into the full dynamics of translational shutdown, and its relationship to many diseases.

"I think seeing is believing, and that's our contribution here," said Stasevich, a Boettcher Investigator whose lab previously published the biochemical tagging and imaging technique in the journal Science. "We are using live cells as test tubes to study dynamic processes that have never been seen before. The ability to image these processes at the single-molecule level in living cells will be a powerful tool to better understand the cellular stress response in normal and diseased cells."

Parker's lab at CU Boulder had long been interested in RNA interactions associated with cellular stress. "We saw Tim's Science paper on nascent chain tracking, and thought this would be the perfect technique to answer questions our lab had been trying to figure out for a while," explained CU postdoctoral researcher Stephanie Moon, co-first author on the Nature Cell Biology paper and a former CSU graduate student.

The dynamics of stress granule formation had only been inferred in previous research, Parker said. "But if cells don't make them, they die. So they must be important."

Previously, the only way scientists like Parker and Moon could "see" RNAs during cellular stress was through fixed cell imaging - the equivalent of taking a snapshot. "We knew the RNAs were in the stress granules, and we knew which RNAs were in there. We knew they could be affected by mutations that can cause disease. All that knowledge was based on static images," Parker said.

According to earlier research by Parker, several mutations can cause such RNA-protein assemblies to form incorrectly, and these aberrations are linked to neurodegenerative diseases like Amyotrophic Lateral Sclerosis.

By going to the movies with Stasevich's team, the cellular stress response has come alive in colorful detail, shedding light on previously hidden details. Among the paper's major findings is that while some RNAs come and go at the surfaces of the granules, some are peculiarly stuck, as if tethered in molasses, the researchers said.

"By showing that RNAs go to a granule, are translationally repressed, and they stay there, it suggests that the stress granules may have a role in keeping those RNAs out of gene expression," Moon said.

Tatsuya Morisaki, co-first author and a senior researcher in Stasevich's lab, led the imaging experiments with Moon and developed the translation tracking technique. Morisaki used a cell line developed by Parker's lab that contains a green fluorescent marker for stress granules. The Stasevich la's fluorescent labeling technology altered the cell line with markers that fluoresce far-red for RNA, and red for translation, allowing all three colors to be seen at once.

Stasevich called the collaboration a beautiful combination of two labs, moving toward a common goal. "I think we can really work together to answer some questions that have never been answered before," Stasevich said.

Parker agreed.

"Tim's lab is terrific at single-molecule imaging, including translation and RNA localization, while my group is interested in trying to understand these RNA-protein granules and how they form," he added. "This is how science should work."
-end-
Link to paper: https://www.nature.com/articles/s41556-018-0263-4

Colorado State University

Related Neurodegenerative Diseases Articles:

Researchers identify link between birth defect and neurodegenerative diseases
A new study has found a link between neurological birth defects in infants commonly found in pregnant women with diabetes and several neurodegenerative diseases, including Alzheimer's, Parkinson's and Huntington's diseases.
High school football players, 1956-1970, did not have increase of neurodegenerative diseases
A Mayo Clinic study published online today in Mayo Clinic Proceedings found that varsity football players from 1956 to 1970 did not have an increased risk of degenerative brain diseases compared with athletes in other varsity sports.
Researchers reveal how neurodegenerative diseases spread through the brain
Synapses, the place where brain cells contact one another, play a pivotal role in the transmission of toxic proteins.
Untangling a cause of memory loss in neurodegenerative diseases
In mice genetically engineered to mimic aspects of human tauopathy disorders, the researchers restored some of the learning and memory deficits by blocking caspase-2 activity, which suggests that some of the cognitive loss seen in tauopathies might be reversible.
New impetus for treatment neurodegenerative diseases
Twenty years ago, tumor necrosis factor (TNF) seemed a promising target in the treatment of brain diseases like multiple sclerosis or Alzheimer's Disease.
Study demonstrates role of gut bacteria in neurodegenerative diseases
Research has revealed that exposure to bacterial proteins called amyloid that have structural similarity to brain proteins may lead to an increase in clumping of proteins in the brain.
How do the bugs in your gut affect neurodegenerative and psychiatric diseases?
A growing body of scientific and medical evidence continues to shed light on the complex interaction between metabolic pathways affected by microrganisms living in the human gut and gene expression, immune function, and inflammation that can contribute to a range of cognitive, psychiatric, and neurodegenerative disorders.
Antioxidant therapies may help in the fight against neurodegenerative diseases
A new review examines the potential of antioxidant approaches for the treatment of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and multiple sclerosis.
Promising results with new gene therapy approach for treating inherited neurodegenerative diseases
A new gene therapy approach designed to replace the enzyme that is deficient in patients with the inherited neurodegenerative disorders Tay-Sachs and Sandhoff diseases successfully delivered the therapeutic gene to the brains of treated mice, restored enzyme function, and extended survival by about 2.5-fold.
Could a new class of fungicides play a role in autism, neurodegenerative diseases?
Scientists at the UNC School of Medicine have found a class of commonly used fungicides that produce gene expression changes similar to those in people with autism and neurodegenerative conditions, including Alzheimer's disease and Huntington's disease.

Related Neurodegenerative Diseases Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...