Microstructured optical fibers find their 3D-printed groove

January 25, 2021

Small-scale optical devices capable of using photons for high-speed information processing can be fabricated with unprecedented ease and precision using an additive manufacturing process developed at KAUST.

Fiber optics are conventionally produced by drawing thin filaments out of molten silica glass down to microscale dimensions. By infusing these fibers with long narrow hollow channels, a new class of optical devices termed "photonic crystal fibers" were introduced. The periodic arrangement of air holes in these photonic crystal fibers act like near-perfect mirrors, allowing trapping and long propagation of light in their central core.

"Photonic crystal fibers allow you to confine light in very tight spaces, increasing the optical interaction," explains Andrea Bertoncini, a postdoc working with Carlo Liberale. "This enables the fibers to massively reduce the propagation distance needed to realize particular optical functions, like polarization control or wavelength splitting."

One way that researchers use to tune the optical properties of photonic crystal fibers is by varying their cross-sectional geometry -- changing the size and shape of the hollow tubes, or arranging them into fractal designs. Typically, these patterns are made by performing the drawing process on scaled-up versions of the final fiber. Not all the geometries are possible with this method, however, due to the effects of forces such as gravity and surface tension.

To overcome such limitations, the group turned to a high-precision three-dimensional (3D) printing technology. Using a laser to transform photosensitive polymers into transparent solids, the team built up photonic crystal fibers layer by layer. Characterizations revealed that this technique could successfully replicate the geometrical pattern of several types of microstructured optical fibers at faster speeds than conventional fabrications.

Bertoncini explains that the new process also makes it easy to combine multiple photonic units together. They demonstrated this approach by 3D printing a series of photonic crystal fiber segments that split the polarization components of light beams into separated fiber cores. A custom-fabricated tapered connection between the beam splitter and a conventional fiber optic ensured efficient device integration.

"Photonic crystal fibers offer scientists a type of 'tuning knob' to control light-guiding properties through geometric design," says Bertoncini. "However, people were not fully exploiting these properties because of the difficulties of producing arbitrary hole patterns with conventional methods. The surprising thing is that now, with our approach, you can fabricate them. You design the 3D model, you print it, and that's it."
-end-


King Abdullah University of Science & Technology (KAUST)

Related Light Articles from Brightsurf:

Light from rare earth: new opportunities for organic light-emitting diodes
Efficient and stable blue OLED is still a challenge due to the lack of emitter simultaneously with high efficiency and short excited-state lifetime.

Guiding light: Skoltech technology puts a light-painting drone at your fingertips
Skoltech researchers have designed and developed an interface that allows a user to direct a small drone to light-paint patterns or letters through hand gestures.

Painting with light: Novel nanopillars precisely control intensity of transmitted light
By shining white light on a glass slide stippled with millions of tiny titanium dioxide pillars, researchers at the National Institute of Standards and Technology (NIST) and their collaborators have reproduced with astonishing fidelity the luminous hues and subtle shadings of 'Girl With a Pearl Earring.'

Seeing the light: Researchers combine technologies for better light control
A new technology that can allow for better light control without requiring large, difficult-to-integrate materials and structures has been developed by Penn State researchers.

A different slant of light
Giant clams manipulate light to assist their symbiotic partner.

New light for plants
Scientists from ITMO in collaboration with their colleagues from Tomsk Polytechnic University came up with an idea to create light sources from ceramics with the addition of chrome: the light from such lamps offers not just red but also infrared (IR) light, which is expected to have a positive effect on plants' growth.

Scientists use light to accelerate supercurrents, access forbidden light, quantum world
Iowa State's Jigang Wang continues to explore using light waves to accelerate supercurrents to access the unique and potentially useful properties of the quantum world.

The power of light
As COVID-19 continues to ravage global populations, the world is singularly focused on finding ways to battle the novel coronavirus.

Seeing the light: MSU research finds new way novae light up the sky
An international team of astronomers from 40 institutes across 17 countries found that shocks cause most the brightness in novae.

Seeing the light: Astronomers find new way novae light up the sky
An international team of researchers, in a paper published today in Nature Astronomy, highlights a new way novae light up the sky: this is shocks from explosions that create the novae that cause most of the their brightness.

Read More: Light News and Light Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.