GEFS: Searching beyond seismology for earthquake precursors

January 25, 2021

To predict when earthquakes are likely to occur, seismologists often use statistics to monitor how clusters of seismic activity evolve over time. However, this approach often fails to anticipate the time and magnitude of large-scale earthquakes, leading to dangerous oversights in current early-warning systems. For decades, studies outside the seismology field have proposed that these major, potentially devastating seismic events are connected to a range of non-seismic phenomena - which can be observed days or even weeks before these large earthquakes occur. So far, however, this idea hasn't caught on in the wider scientific community. In this special issue, EPJ Special Topics proposes the Global Earthquake Forecasting System (GEFS): the first collaborative initiative between multi-disciplinary researchers devoted to studying a diverse array of non-seismic earthquake precursors.

By promoting the integration of these ideas with existing theories in seismology, GEFS could lead to significant improvements of earthquake early warning systems; potentially saving lives and protecting critical infrastructures when future disasters hit. The initiative is rationalised via a subtle atomic-level defect-based mechanism for explaining a variety of earthquake precursors, building on decades of laboratory experiments in physical chemistry and solid-state physics. The theory suggests that, as stresses build up in tectonic plates prior to seismic activity, electron-hole pairs are generated in the Earth's crust. The electrons are confined to the stressed rocks, but the positively charged holes flow out into the surrounding, less stressed rocks, producing electrical currents that can travel over large distances. These currents in turn can trigger wide-ranging secondary effects ranging from unusual low to ultralow electromagnetic radiation, to emissions of spectroscopically distinct thermal infrared from the Earth's surface, to changes in the atmosphere and ionosphere.

This special issue documents the findings of researchers around the world, who have used both ground- and space-based observations to link these non-seismic patterns to the occurrence of subsequent large earthquakes. The work creates a strong rationale for global efforts to continually monitor the Earth for key signs of these precursors, which are often intermittent and weak. If its aims are realised, GEFS could be the first step towards a widespread collaboration between different scientific communities, each with the shared goal of improving our ability to forecast large earthquakes in the future.
-end-
All articles are available here and are freely accessible at https://link.springer.com/journal/11734/volumes-and-issues/230-1 until 21 March 2021.

Reference

F Freund, G Ouillon, A Mignan, D Sornette (2020), Preface to the Global Earthquake Forecasting System (GEFS) Special Issue: Towards Using Non-seismic Precursors for the Prediction of Large Earthquakes, Eur. Phys. J. Special Topics, DOI 10.1140/epjst/e2020-000242-4

Springer

Related Earthquakes Articles from Brightsurf:

AI detects hidden earthquakes
Tiny movements in Earth's outermost layer may provide a Rosetta Stone for deciphering the physics and warning signs of big quakes.

Undersea earthquakes shake up climate science
Sound generated by seismic events on the seabed can be used to determine the temperature of Earth's warming oceans.

New discovery could highlight areas where earthquakes are less likely to occur
Scientists from Cardiff University have discovered specific conditions that occur along the ocean floor where two tectonic plates are more likely to slowly creep past one another as opposed to drastically slipping and creating catastrophic earthquakes.

Does accelerated subduction precede great earthquakes?
A strange reversal of ground motion preceded two of the largest earthquakes in history.

Scientists get first look at cause of 'slow motion' earthquakes
An international team of scientists has for the first time identified the conditions deep below the Earth's surface that lead to the triggering of so-called 'slow motion' earthquakes.

Separations between earthquakes reveal clear patterns
So far, few studies have explored how the similarity between inter-earthquake times and distances is related to their separation from initial events.

How earthquakes deform gravity
Researchers at the German Research Centre for Geosciences GFZ in Potsdam have developed an algorithm that for the first time can describe a gravitational signal caused by earthquakes with high accuracy.

Bridge protection in catastrophic earthquakes
Bridges are the most vulnerable parts of a transport network when earthquakes occur, obstructing emergency response, search and rescue missions and aid delivery, increasing potential fatalities.

Earthquakes, chickens, and bugs, oh my!
Computer scientists at the University of California, Riverside have developed two algorithms that will improve earthquake monitoring and help farmers protect their crops from dangerous insects, or monitor the health of chickens and other animals.

Can a UNICORN outrun earthquakes?
A University of Tokyo Team transformed its UNICORN computing code into an AI-like algorithm to more quickly simulate tectonic plate deformation due to a phenomenon called a ''fault slip,'' a sudden shift that occurs at the plate boundary.

Read More: Earthquakes News and Earthquakes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.