A new mechanism protects against cancer cell migration and neuron hyperexcitability

January 25, 2021

G3BP proteins inhibit the metabolic driver MTOR - a signaling protein that plays a central role in tumor diseases and developmental disorders of the brain. This is reported in this week´s issue of the renowned journal Cell. The study was led by scientists from the University of Innsbruck and the German Cancer Research Center (DKFZ) in collaboration with the Medical University of Innsbruck and a Europe-wide research network.

The signaling protein MTOR (Mechanistic Target of Rapamycin) is a sensor for nutrients such as amino acids and sugars. When sufficient nutrients are available, MTOR boosts metabolism and ensures that sufficient energy and building blocks are available for the growth and function of all cells in the human body. "Because MTOR is such a central switch for metabolism, errors in its activation lead to serious diseases. These include cancers associated with excessive metabolic activity, cell growth and proliferation. Dysregulated MTOR also causes malformations of the nervous system, disturbing stimulus processing and eliciting behavioral disorders and epilepsy." explains Kathrin Thedieck, Professor of Biochemistry at the University of Innsbruck.

To prevent errors in MTOR-based signal processing, the cell controls its activity very precisely. This is achieved through so-called suppressors, molecules that inhibit a protein and help to regulate its activity. The TSC complex is such a suppressor for MTOR. It is named after the disease that is caused by its absence - tuberous sclerosis complex (TSC) disease. Together with MTOR, the TSC complex localizes to small cellular structures, the lysosomes, where it keeps MTOR in check. If the TSC complex - for example due to changes (mutations) in one of its components - no longer remains at the lysosome, this can lead to excessive MTOR activity with severe consequences for human health.

A molecular TSC anchor at lysosomes

The teams led by Kathrin Thedieck at the University of Innsbruck and Christiane Opitz at DKFZ therefore investigated how the TSC complex binds to lysosomes. They discovered that the G3BP (Ras GTPase-activating protein-binding protein) proteins localize to lysosomes, together with the TSC complex. There, the G3BP proteins form an anchor that ensures that the TSC complex can bind to the lysosomes. This anchor function plays a crucial role in breast cancer. If the amount of G3BP decreases, not only MTOR activity but also cell motility is increased in cancer cell cultures. MTOR inhibitors suppress this hypermotility. In breast cancer patients, low G3BP correlates with a worse prognosis. "G3BP proteins could therefore be valuable markers to personalize therapies and improve the efficacy of drugs that inhibit MTOR." says Christiane Opitz.

G3BP proteins also inhibit MTOR in the brain. In zebrafish, an important animal model for pharmaceutical research, the scientists observed disturbances in brain development when G3BP was missing. Loss of G3BP also resulted in neuronal hyperactivity and ensuing behavioral abnormalities reminiscent of epilepsy in humans. Compounds that target MTOR suppressed the neuronal hyperactivity. "We therefore anticipate that patients with neurological disorders and G3BP malfunction could benefit from MTOR inhibitors and we look forward to further exploring this together with our scientific network," says Kathrin Thedieck. Also Lukas A. Huber, Director of Cell Biology at the Medical University of Innsbruck, is pleased with the joint success: "Through this successful collaboration a strong research focus on MTOR and lysosomes is emerging at the two Innsbruck universities, and I am excited to embark on our next projects." states Lukas A. Huber.
-end-
The study was published in Cell. The authors received funding from the German Tuberous Sclerosis Foundation, the Dutch TSC Fonds, the Austrian Science Fund, the German Research Foundation and the European Union, among others, as part of the MESI-STRAT breast cancer consortium (http://www.mesi-strat.eu).

University of Innsbruck

Related Breast Cancer Articles from Brightsurf:

Oncotarget: IGF2 expression in breast cancer tumors and in breast cancer cells
The Oncotarget authors propose that methylation of DVDMR represents a novel epigenetic biomarker that determines the levels of IGF2 protein expression in breast cancer.

Breast cancer: AI predicts which pre-malignant breast lesions will progress to advanced cancer
New research at Case Western Reserve University in Cleveland, Ohio, could help better determine which patients diagnosed with the pre-malignant breast cancer commonly as stage 0 are likely to progress to invasive breast cancer and therefore might benefit from additional therapy over and above surgery alone.

Partial breast irradiation effective treatment option for low-risk breast cancer
Partial breast irradiation produces similar long-term survival rates and risk for recurrence compared with whole breast irradiation for many women with low-risk, early stage breast cancer, according to new clinical data from a national clinical trial involving researchers from The Ohio State University Comprehensive Cancer Center - Arthur G.

Breast screening linked to 60 per cent lower risk of breast cancer death in first 10 years
Women who take part in breast screening have a significantly greater benefit from treatments than those who are not screened, according to a study of more than 50,000 women.

More clues revealed in link between normal breast changes and invasive breast cancer
A research team, led by investigators from Georgetown Lombardi Comprehensive Cancer Center, details how a natural and dramatic process -- changes in mammary glands to accommodate breastfeeding -- uses a molecular process believed to contribute to survival of pre-malignant breast cells.

Breast tissue tumor suppressor PTEN: A potential Achilles heel for breast cancer cells
A highly collaborative team of researchers at the Medical University of South Carolina and Ohio State University report in Nature Communications that they have identified a novel pathway for connective tissue PTEN in breast cancer cell response to radiotherapy.

Computers equal radiologists in assessing breast density and associated breast cancer risk
Automated breast-density evaluation was just as accurate in predicting women's risk of breast cancer, found and not found by mammography, as subjective evaluation done by radiologists, in a study led by researchers at UC San Francisco and Mayo Clinic.

Blood test can effectively rule out breast cancer, regardless of breast density
A new study published in PLOS ONE demonstrates that Videssa® Breast, a multi-protein biomarker blood test for breast cancer, is unaffected by breast density and can reliably rule out breast cancer in women with both dense and non-dense breast tissue.

Study shows influence of surgeons on likelihood of removal of healthy breast after breast cancer dia
Attending surgeons can have a strong influence on whether a patient undergoes contralateral prophylactic mastectomy after a diagnosis of breast cancer, according to a study published by JAMA Surgery.

Young breast cancer patients undergoing breast conserving surgery see improved prognosis
A new analysis indicates that breast cancer prognoses have improved over time in young women treated with breast conserving surgery.

Read More: Breast Cancer News and Breast Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.