White turns into (extreme-)ultraviolet

January 25, 2021

Researchers from the Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI) have developed a new method to modify the spectral width of extreme-ultraviolet (XUV) light. By employing a novel phase-matching scheme in four-wave mixing, they could compress the spectral width of the initial broadband light by more than hundred times. The detailed experimental and theoretical results have been published in Nature Photonics.

Light, as emitted by the sun, consists of many different colors and typically appears as white. Sometimes, however, only certain colors reach our eyes, leading to stunning phenomena like an afterglow. For technical or scientific applications that require a specific color, gratings and prisms can be used to extract this color from the white light. However, most of the incoming light is lost during this process, and the light intensity at the exit is very low.

Nonlinear optical techniques have made it possible to change the color of light and modify its spectral bandwidth without compromising the intensity. As illustrated in Fig. 1, this enables the generation of light with a specific color from broadband light (such as white light) or vice versa. These techniques are widely applied in spectroscopy, imaging, and for the generation of ultrashort laser pulses. However, nonlinear optical techniques are not readily available in the XUV region of the electromagnetic spectrum. This region is of increasing interest for various applications, including attosecond science and EUV lithography.

A team of researchers from the Max Born Institute has recently demonstrated a new concept to generate narrowband laser pulses in the XUV range. They combined broadband white light in the visible region with light having a broad spectrum in the vacuum-ultraviolet (VUV) region. After both of these light pulses simultaneously propagated through a dense jet of krypton atoms, a new laser pulse in the XUV range was generated. Remarkably, the spectral width of the new XUV pulse was more than hundred times narrower compared to the initial visible and VUV pulses.

The scientists employed a scheme known as four-wave mixing, where one krypton atom absorbs two visible photons and one VUV photon, leading to the emission of one XUV photon. Due to energy conservation, the emitted XUV photon must have a frequency equal to the sum of the frequencies of all three absorbed photons. At the same time, due to momentum conservation, the velocity of the incoming light wave has to match the velocity of the outgoing wave inside the mixing medium. This velocity changes very fast close to an atomic resonance.

To generate the narrowband XUV laser band, the researchers chose a VUV spectral range quite far away from any resonance and a target XUV range between two resonances. In doing so, they were able to match the velocities of a broad range of incoming wavelengths to a narrow region of outgoing wavelengths. In Fig. 2, on the left side, absorption in the VUV over a broad spectral range (blue area) is indicated. The red dashed curve indicates the frequency-dependent refractive index, which is a measure of the light velocity. On the right side, a narrow spectral region in the XUV range (violet area) is shown. In these regions, the light travels approximately at the same speed, i.e., with a similar refractive index. These velocities can be matched by the near-horizontal arrows indicating the photons in the visible spectrum. The illustration shows that this allows converting a broadband VUV spectrum with a relatively flat wavelength-velocity dependence into a narrowband XUV pulse, where the wavelength-velocity dependence is near vertical.

The generation of narrowband XUV pulses is interesting for applications such as electron spectroscopy, the investigation of resonant transitions, and the coherent diffractive imaging of nanoscale structures. In the future, the new method could also be used in the opposite direction, i.e., to spectrally broaden XUV pulses, which may result in the generation of very short XUV pulses from sources such as free-electron lasers and soft- X-ray lasers.

Max Born Institute for Nonlinear Optics and Short Pulse Spectroscopy (MBI)

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.