Finding a way to stop chemotherapy from damaging the heart

January 25, 2021

COLUMBUS, Ohio - There could be an intervention on the horizon to help prevent heart damage caused by the common chemotherapy drug doxorubicin, new research suggests.

Scientists found that this chemo drug, used to treat many types of solid tumors and blood cancers, is able to enter heart cells by hitchhiking on a specific type of protein that functions as a transporter to move a drug from the blood into heart cells.

By introducing another anti-cancer drug in advance of the chemo, the researchers were able to block the transporter protein, effectively stopping the delivery of doxorubicin to those cardiac cells. This added drug, nilotinib, has been previously found to inhibit activation of other, related transport proteins.

The current findings are based on lab experiments in cell cultures and mice. The researchers are continuing studies with hopes to start designing human trials of the drug intervention later in 2021.

"The proposed intervention strategy that we'd like to use in the clinic would be giving nilotinib before a chemotherapy treatment to restrict doxorubicin from accessing the heart," said first author Kevin Huang, who graduated in December from The Ohio State University with a PhD in pharmaceutical sciences. "We have pretty solid preclinical evidence that this intervention strategy might work."

The study is published today (Jan. 25, 2021) in Proceedings of the National Academy of Sciences.

Doxorubicin has long been known for its potential to increase patients' risk for serious heart problems, with symptoms sometimes surfacing decades after chemo, but the mechanisms have been a mystery. The risk is dose-dependent - the more doses a patient receives, the higher the risk for cardiac dysfunction later in life that includes arrhythmia and a reduction in blood pumped with each contraction, a hallmark symptom of congestive heart failure.

Huang worked in the lab of senior study authors Shuiying Hu and Alex Sparreboom, faculty members in pharmaceutics and pharmacology and members of the Ohio State Comprehensive Cancer Center's Translational Therapeutics program. This research and other studies targeting different transport proteins to prevent chemo-related nerve pain were also part of Huang's dissertation.

"Our lab works on the belief that drugs don't naturally or spontaneously diffuse into any cell they would like to. We hypothesize that there are specialized protein channels found on specific cells that will facilitate movement of internal or external compounds into the cell," Huang said.

For this work, the team focused on cardiomyocytes, cells composing the muscle behind the heart contractions that pump blood to the rest of the body. The researchers examined cardiomyocytes that were reprogrammed from skin cells donated by two groups of cancer patients who had been treated with doxorubicin - some who suffered cardiac dysfunction after chemo, and others who did not.

The scientists found that the gene responsible for production of the transport protein in question, called OCT3, was highly expressed in the cells derived from cancer patients who had experienced heart problems after treatment with doxorubicin.

"We used mouse models and engineered cell models to demonstrate doxorubicin does transport through this protein channel, OCT3," Huang said. "We then looked prospectively into what this means from a therapy perspective."

Blocking OCT3 became the goal once researchers found that genetically modified mice lacking the OCT3 gene were protected from heart damage after receiving doxorubicin. Further studies showed that inhibiting OCT3 did not interfere with doxorubicin's effectiveness against cancer.

Hu and Sparreboom have specialized in a class of drugs called tyrosine kinase inhibitors, which block specific enzymes related to many cell functions. Nilotinib, a chronic myeloid leukemia drug, is a tyrosine kinase inhibitor that is also known to act on OCT3.

Additional experiments showed that cardiac function was preserved in mice that were pretreated with nilotinib before receiving doxorubicin - and the pretreatment did not interfere with doxorubicin's ability to kill cancer cells.

The researchers plan to gather additional supporting evidence before pursuing a Phase 1 clinical trial testing the safety of two components of the proposed drug intervention in humans: blocking the function of the OCT3 transporter protein and demonstrating that inhibiting OCT3 in patients treated with doxorubicin protects those patients' hearts from chemo-induced injury.
-end-
This work was supported by the National Institutes of Health, the Robert Bosch Stiftung, the German Research Foundation and Pelotonia funds from Ohio State. Huang was named a Pelotonia Graduate Fellow in 2018.

Additional Ohio State co-authors include Megan Zavorka Thomas, Eric Eisenmann, Muhammad Erfan Uddin, Duncan DiGiacomo, Alexander Pan, Sherry Xia, Yang Li, Yan Jin, Qiang Fu, Alice Gibson, Ingrid Bonilla, Cynthia Carnes, Kara Corps, Vincenzo Coppola, Sakima Smith, Daniel Addison, Ralf Bundschuh, Maryam Lustberg, Moray Campbell, Pearlly Yan and Sharyn Baker.

Contacts:

Kevin Huang,
Huang.2834@osu.edu

Alex Sparreboom,
Sparreboom.1@osu.edu

Written By Emily Caldwell,
Caldwell.151@osu.edu

Ohio State University

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.