Researchers discover way to make cells in the eye sensitive to light

January 26, 2005

Researchers have discovered a way to make light sensitive cells in the eye by switching on a single gene.

According to research published online today in Nature, the team from Imperial College London and the University of Manchester, have discovered that activating the melanopsin gene in the nerve cells causes them to become light responsive, or photoreceptive.

Using mouse cells, the researchers found that melanopsin could be used to make neurones light responsive. They found that as well as being sensitive to blue light, melanopsin uses light at different wavelengths to regenerate itself. In some forms of hereditary blindness photoreceptors are lost entirely, but the retinal ganglion cells, the cells which signal to the brain, remain intact. The researchers believe that by activating the melanopsin, these cells may gain the ability to sense and respond to light.

Professor Mark Hankins, from Imperial College London and Charing Cross Hospital, and one of the papers authors, comments: "It is quite remarkable that the activation of a single gene can create a functional photoreceptor. It is an important proof of principle that melanopsin can make non-light sensitive cells receptive to light, and although not a cure, could have applications in treating some forms of blindness."

Dr Rob Lucas, from the University of Manchester, and one of the paper's authors, adds: "The discovery that melanopsin is capable of making cells photosensitive has given us a unique opportunity to study the characteristics of this interesting protein. The textbook view of the eye is that it contains only two light sensing systems, the rods and cones. However, over the last few years it has become increasingly accepted that we have a third system, which uses melanopsin, that has lain undetected during decades of vigorous scientific investigation."

Professor Hankins and Dr Lucas were part of the team who previously discovered a new light detection system in the eye, totally independent of the rods and cones, which were thought to be the only systems providing sight. They measured light-induced pupillary constriction in genetically modified mice that lacked melanopsin. When the mice lacking melanopsin were exposed to low light, their pupillary response was the same as normal mice, but when they were exposed to bright light their pupil constriction was incomplete.

The researchers believe that while not a cure for blindness, the findings could lead to therapies for treating some forms of blindness, such as retinitis pigmentosa. Retinitis pigmentosa is a form of hereditary blindness where the rods and cones are destroyed, but the rest of the eye and retina remains intact. By switching on the melanopsin it could be possible to restore the eyes ability to respond to light.

Although making cells in the eye responsive to light is not a cure for blindness, the team are collaborating with engineers from Imperial to develop a functional retinal prosthesis which would allow the information from the light responsive cells to be used by the brain to process images.
-end-
The research was supported by a Wellcome Trust Showcase Award and the BBSRC.

Imperial College London

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.