Natural selection is not the only process that drives evolution

January 26, 2009

Why have some of our genes evolved rapidly? It is widely believed that Darwinian natural selection is responsible, but research led by a group at Uppsala University, suggests that a separate neutral (nonadaptive) process has made a significant contribution to human evolution. Their results have been published today in the journal PLoS Biology.

The researchers identified fast evolving human genes by comparing our genome with those of other primates. However, surprisingly, the patterns of molecular evolution in many of the genes they found did not contain signals of natural selection. Instead, their evidence suggests that a separate process known as BGC (biased gene conversion) has speeded up the rate of evolution in certain genes. This process increases the rate at which certain mutations spread through a population, regardless of whether they are beneficial or harmful.

"The research not only increases our understanding of human evolution, but also suggests that many techniques used by evolutionary biologists to detect selection may be flawed" says Matthew Webster

BGC is thought to be strongest in regions of high recombination, and can cause harmful mutations can spread through populations. The results lead to the provocative hypothesis that, rather than being the result of Darwinian selection for new adaptations, many of the genetic changes leading to human-specific characters may be the result of the fixation of harmful mutations. This contrasts the traditional Darwinistic view that they are the result of natural selection in favour of adaptive mutations.
-end-


Uppsala University

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.