Diamond is one tough cookie

January 26, 2010

LIVERMORE, Calif. - Most people know that diamond is one of the hardest solids on Earth, so strong that it can easily cut through glass and steel. Surprisingly, very little is known about the strength of diamond at extreme conditions. But new research by Lawrence Livermore National Laboratory scientists shows that diamond becomes even stronger during rapid compression.

Using the Janus laser at LLNL and the Omega laser at the University of Rochester, Livermore scientists and Rochester and UC Berkeley colleagues showed that when shock waves are applied to diamond with powerful lasers, it can support almost a million times atmospheric pressure before being crushed.

The research has implications for the technological uses of diamond, showing that its strength could affect fusion-energy experiments at the National Ignition Facility, where high-density carbon (essentially diamond) is a leading candidate for target capsules.

"But it could also provide insights into the ancient history of natural diamonds found on Earth and in meteorites, where shock waves caused by impact are common," said Stewart McWilliams, lead author of a paper appearing in the upcoming edition of the journal, Physical Review B. McWilliams conducted the experiments while on a Student Employee Graduate Research Fellowship (SEGRF) at LLNL.

Most natural diamonds are formed at high-pressure, high-temperature conditions existing at depths of 87 to 120 miles in the Earth's mantle. Carbon-containing minerals provide the carbon source, and the growth occurs over periods from 1 billion to 3.3 billion years (25 percent to 75 percent of the age of the Earth).

In the recent research, the team measured the behavior of natural diamond crystals under shock-wave compression between 1 million and 10 million atmospheres of pressure, and the diamonds were crushed and melted in just a nanosecond (one billionth of a second).

"What we found is that diamond exhibits considerable strength right up to the point it melts," McWilliams said.

"We reached some surprising conclusions about the strength of diamond," said LLNL co-author Jon Eggert. "This type of research informs us about the interiors of the gas giants as well our own planet."

Earlier research conducted by Livermore scientists show that diamond melts at around 6 million atmospheres of pressure and 14,000 degrees Fahrenheit. Their experiments mimicked conditions on the icy gas giant planets (Uranus and Neptune) where, according to their research, icebergs of diamond could float on a sea of liquid carbon.
-end-
Other Livermore authors include Damien Hicks, David Bradley, Peter Celliers, and Gilbert Collins.

Founded in 1952, Lawrence Livermore National Laboratory (www.llnl.gov) is a national security laboratory that develops science and engineering technology and provides innovative solutions to our nation's most important challenges. Lawrence Livermore National Laboratory is managed by Lawrence Livermore National Security, LLC for the U.S. Department of Energy's National Nuclear Security Administration.

DOE/Lawrence Livermore National Laboratory

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.