Grant to study how cells sense electric fields

January 26, 2010

Learning how living cells can detect and respond to electric fields is the aim of a $570,000, three-year grant from the National Science Foundation to Min Zhao, professor of dermatology and ophthalmology at the UC Davis Health System and Center for Neuroscience.

Living cells are already known to respond to electric fields, as well as being able to sense light, temperature and chemical signals. Understanding this mechanism would establish a new biological signaling mechanism, with implications for engineering tissues and wound healing as well as in basic science, Zhao said.

Zhao and colleagues will use the grant to generate hundreds of thousands of genetic mutations in the amoeba Dictyostelium discoideum. They will collaborate with Tingrui Pan, professor of biomedical engineering, to develop methods to quickly screen thousands of mutant amoebae for those that do not respond to electric fields. Those defective amoebae will allow the scientists to home in on the genes and molecules responsible.

Dictyostelium was selected for the study because it is the simplest cell to work with that also moves, Zhao said.

In previous work, Zhao and his collaborators found that wounds generate a weak electric field that guides cells moving in to repair the wound.

"The big question is, how do the cells detect the electric field?" Zhao said. He believes that there is a molecule or set of molecules within cells that respond to electric fields.
-end-


University of California - Davis

Related Biomedical Engineering Articles from Brightsurf:

Applying machine learning to biomedical science
Dr Pengyi Yang and colleagues from the University of Sydney have brought together the latest developments in applications of machine learning in biomedical science, showing that new techniques are combining ensemble methods with deep learning, with potential applications in cancer research and better understanding viruses.

Hydrogel paves way for biomedical breakthrough
Dubbed the ''invisibility cloak'', engineers at the University of Sydney have developed a hydrogel that allows implants and transplants to better and more safetly interact with surrounding tissue.

Biomedical instrument based on microvesicles
Researchers have proved that a microvesicle-based instrument can be effective in reducing inflammation and immune response.

Biomedical researchers get closer to why eczema happens
A new study from researchers at Binghamton University, State University of New York may help to peel back the layers of unhealthy skin -- at least metaphorically speaking -- and get closer to a cure.

Artificial intelligence improves biomedical imaging
ETH researchers use artificial intelligence to improve quality of images recorded by a relatively new biomedical imaging method.

Transparency and reproducibility of biomedical research is improving
New research publishing Nov. 20 in the open-access journal PLOS Biology from Joshua Wallach, Kevin Boyack, and John Ioannidis suggests that progress has been made in key areas of research transparency and reproducibility.

A pill for delivering biomedical micromotors
Using tiny micromotors to diagnose and treat disease in the human body could soon be a reality.

Accounting for sex differences in biomedical research
When it comes to health, a person's sex can play a role.

Biomedical Engineering hosts national conference on STEM education for underserved students
The University of Akron hosts a national conference aimed at ensuring underserved students have access to opportunities in science, technology, engineering and mathematics (STEM).

Boosting the lifetime and effectiveness of biomedical devices
A research team led by the University of Delaware's David Martin has discovered a new approach to boosting the lifetime and effectiveness of electronic biomedical devices.

Read More: Biomedical Engineering News and Biomedical Engineering Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.