Antibiotics might team up to fight deadly staph infections

January 26, 2010

Researchers at the University of Illinois at Chicago and Israel's Weizman Institute of Science have found that two antibiotics working together might be more effective in fighting pathogenic bacteria than either drug on its own.

Individually, lankacidin and lankamycin, two antibiotics produced naturally by the microbe streptomyces, are marginally effective in warding off pathogens, says Alexander Mankin, professor and associate director of the UIC Center for Pharmaceutical Biotechnology and lead investigator of the portion of the study conducted at UIC.

Mankin's team found that when used together, the two antibiotics are much more successful in inhibiting growth of dangerous pathogens such as MRSA, or methicillin-resistant Staphylococcus aureus, and possibly others.

MRSA is a staph infection that is resistant to certain antibiotics. According to a 2007 government report, more than 90,000 Americans get potentially deadly infections each year.

The research results are published in the Jan. 11 online edition of the Proceedings of the National Academy of Sciences of the USA.

Lankacidin and lankamycin act upon the ribosomes, the protein-synthesizing factories of the cell. A newly-made protein exits the ribosome through a tunnel through the ribosome body. Some antibiotics stave off an infection by preventing the ribosome from assembling proteins, while others bind in the tunnel and block the protein's passage.

Through the use of X-ray crystallography, which determines the arrangement of atoms in biological molecules, the Israeli team, led by Ada Yonath, a 2009 Nobel Prize winner, discovered the exact binding site of lankacidin in the ribosome. Mankin's group demonstrated that lankacidin prevents the ribosome from assembling new proteins.

However, when researchers realized that streptomyces also manufactures lankamycin, they became curious whether the two drugs might help each other. Biochemical analysis and molecular modeling showed that lankamycin binds in the ribosomal tunnel right next to lankacidin.

"What we found most amazing is that the two antibiotics appeared to help each other in stopping pathogens from making new proteins and in inhibiting bacterial growth," Mankin said.

Today, many companies are attempting to make individual drugs better, Mankin said. What the research suggests is that in some cases, it is a "much better strategy not to improve individual drugs, but the combinations of drugs that can act together."
-end-
Mankin's team includes Liqun Xiong and Dorota Klepacki of the UIC Center for Pharmaceutical Biotechnology.

For more information about UIC, visit www.uic.edu.

University of Illinois at Chicago

Related Antibiotics Articles from Brightsurf:

Insights in the search for new antibiotics
A collaborative research team from the University of Oklahoma, the Memorial Sloan Kettering Cancer Center and Merck & Co. published an opinion article in the journal, Nature Chemical Biology, that addresses the gap in the discovery of new antibiotics.

New tricks for old antibiotics
The study published in the journal Immunity reveals that tetracyclines (broad spectre antibiotics), by partially inhibiting cell mitochondria activity, induce a compensatory response on the organism that decreases tissue damage caused during infection.

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.

How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'

Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.

Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.

Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.

Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.

Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.

Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.

Read More: Antibiotics News and Antibiotics Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.