Federal grant funds production of stem cells for clinical trials

January 26, 2010

MADISON -- The long struggle to move the most versatile stem cells from the laboratory to the clinic got another boost with an $8.8 million contract award to the Waisman Clinical Biomanufacturing Facility at the University of Wisconsin-Madison.

The facility, housed in the Waisman Center on campus, contains a series of clean rooms that can manipulate and produce biological products that are pure enough to be used in human therapies.

"Our main function is to understand how to manufacture biological products and biotechnology drugs in a way that can go into human clinical trials," says Derek Hei, a biochemical engineer who is the facility's technical director. "We also help investigators follow and interpret Food and Drug Administration rules as they move into clinical trials."

"This highly competitive award recognizes the outstanding expertise in cell therapy of Derek Hei and his team of affiliated investigators at the Waisman Clinical Biomanufacturing Facility and from across campus," says Timothy Kamp, director of the university's Stem Cell and Regenerative Medicine Center. "This resource will certainly help advance the important stem cell biology discoveries made at UW toward clinical treatments. The program will also link UW investigators to a larger network of researchers around the U.S. focused on developing powerful new cell therapies for heart, lung and blood diseases. This grant reflects UW's continued commitment to bring the power of stem cell biology to exciting new therapies."

The contract, announced last week by the National Heart, Lung and Blood Institute, will support research at UW-Madison and researchers and firms around the nation, with a focus on projects related to stem cells for treating heart, lung and blood conditions.

The new contract will aid UW-Madison cardiac surgeon Amish Raval, who is investigating how to use bone-marrow stem cells to prevent muscle damage after a heart attack. These stem cells make compounds that reduce inflammation, a major cause of damage to heart muscle in the weeks following a blood stoppage. To move forward with clinical trials, Raval needs a stable, safe and repeatable supply of these stem cells.

The specialized personnel and facilities needed to produce those cells in accordance with FDA standards are extremely expensive, Hei adds.

Biological therapies must overcome a specialized set of hurdles in addition to those standing in the way of conventional pharmaceuticals, says Hei. "For cell therapies, we don't have a way to sterilize the product at the end, so the clean rooms have to be especially clean, must follow aseptic practices from beginning to end. These rooms are under positive pressure, and have specific equipment, incubators, centrifuges, freezers, that are set up for processing stem cells and other biologics."

Air monitors in the clean rooms are used to detect any living contaminants, and many workers must wear head-to-toe gowns. The end point of the small-scale manufacturing process is in many cases a box of vials holding biological treatments ready to be injected during human trials.

Because biological products are based on DNA, they are more variable than the chemicals in conventional drugs, and when experiments conflict, the problem is often traced to genetic variations in the starting material. To overcome this hurdle, the Biomanufacturing Facility maintains a set of ultra-cold freezers that store cells for its clients, Hei says. "Once an investigator has proven safety and efficacy in animal studies, we can provide them with more of the exact same cells for the next stage in development -- human clinical trials. Otherwise, they might have to go back and start over with a new batch of cells, and that wastes time and money."

While the healing potential of embryonic stem cells, which were first isolated at UW-Madison in 1998, remains largely in the future, Hei says researchers are forging ahead. "This type of development is very complicated. After a discovery happens, it typically takes 15 or 20 years to see a payoff, to work out the details, the manufacturing and delivery, to get through all the stages of clinical trials to prove safety and efficacy. I think we are likely 10 years off before we see the major successes in embryonic stem cells and related treatments, but we are really moving ahead."

University of Wisconsin-Madison

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.