Nav: Home

Energy harvesting via smart materials

January 26, 2016

WASHINGTON, D.C., Jan. 26, 2016 -- Energy harvesting is emerging as a viable method for electronic devices to pull ambient energy from their surrounding environment and convert it into electrical energy for stored power. This coveted technology has the potential to serve as an alternative power supply for batteries that are ubiquitous in mobile and autonomous wireless electronic devices.

A group of smart materials known as "electrostrictive polymers" have been explored for years by researchers at the INSA de Lyon for their potential mechanical energy harvesting abilities. This week in the journal Applied Physics Letters, from AIP Publishing, the group reports that introducing a plasticizer into these materials offers an efficient way to improve their mechanical energy harvesting performance.

This is a significant breakthrough because one of the biggest challenges for the development of mechanical energy harvesting via electrostrictive polymers is being able to improve their performance.

As a group of smart materials, electrostrictive polymers can produce field-induced strain when exposed to an applied external electric field. "And this strain has a quadric -- equation described by the second degree -- relationship with the applied electric field," explained Xunqian Yin, lead author and a researcher at the INSA de Lyon.

The group's work centers largely on the piezoelectric effect, which refers to the accumulation of electric charge in certain crystalline solids without a symmetric center in response to an applied mechanical stress or strain.

In this case, "the electrostrictive polymers are non-piezoelectric in nature," said Yin. "But a pseudo-piezoelectric effect can be induced for electrostrictive polymers when they're exposed to a large applied bias DC electric field. As a result, the pseudo-piezoelectric effect was adopted for the mechanical energy harvesting via electrostrictive polymers."

The group studied the influences on mechanical energy harvesting of a variety of operating conditions, including large applied bias DC electric field, as well as the amplitude and frequency of applied external strain. They discovered that increasing the applied bias provides a way to improve the energy conversion efficiency.

In particular, when they worked with a plasticizer-modified "terpolymer," it offered improved mechanical energy harvesting performance, especially when imposed to the same force level, and it can be tapped to create highly sensitive force sensors. "The 'lossy' dielectric and mechanical nature of the modified terpolymer play an important role for energy harvesting based on electrostrictive polymers," Yin said.

Thanks to its large pseudo-piezoelectric coefficient, which is a result of the improved electromechanical coefficient that comes from introducing a plasticizer, "the modified terpolymer thin film can lead to piezoelectric active sensors, such as force sensors," pointed out Yin. "Combining these sensors with advanced fabrication technologies -- inkjet or 3D printing -- should make it easier to build a network of sensors."

Next, the group plans to explore "the role that the electrostrictive polymer's lossy nature plays during the mechanical-to-electrical energy conversion process to establish guidelines for the development of mechanical energy harvesters based on electrostrictive polymers," said Yin.

The group will also attempt "to find a more efficient plasticizer to modify terpolymer, which can contribute to lower energy losses and also improve its electromechanical performances under a low applied electric field," added Yin. "The lower the electric field, the safer and more convenient it is for applications."
-end-
The article, "Mechanical energy harvesting via a plasticizer-modified electrostrictive polymer" is authored by Xunqian Yin, Mickaël Lallart, Pierre-Jean Cottinet, Daniel Guyomar and Jean-Fabien Capsal. It appears in the journal Applied Physics Letters on Tuesday, January 26, 2016 (DOI: 10.1063/1.4939859). After that date, it can be accessed at: http://scitation.aip.org/content/aip/journal/apl/108/4/10.1063/1.4939859

ABOUT THE JOURNAL

Applied Physics Letters features concise, rapid reports on significant new findings in applied physics. The journal covers new experimental and theoretical research on applications of physics phenomena related to all branches of science, engineering, and modern technology. See: http://apl.aip.org

American Institute of Physics

Related Sensors Articles:

Sensors detect disease markers in breath
A small, thin square of an organic plastic that can detect disease markers in breath or toxins in a building's air could soon be the basis of portable, disposable sensor devices.
Are your sensors spying on you?
Cyber experts at Newcastle University, UK, have revealed the ease with which malicious websites and installed apps can spy on us using just the information from the motion sensors in our mobile phones.
A novel method for the fabrication of active-matrix 3-D pressure sensors
A new study, affiliated with South Korea's Ulsan National Institute of Science and Technology (UNIST), developed a transistor-type active-matrix pressure sensor using foldable substrate and air-dielectric layer.
For female mosquitoes, two sets of odor sensors are better than one
A team of Vanderbilt biologists has found that the malaria mosquito has a second complete set of odor receptors that are specially tuned to human scents.
Optimized sensors to study learning and memory
Scientists at Max Planck Florida Institute for Neuroscience are working to understand how molecules send messages throughout the neuron.
Pioneering chip extends sensors' battery life
A low-cost chip that enables batteries in sensors to last longer, in some cases by over ten times, has been developed by engineers from the University of Bristol.
New sensors can detect single protein molecules
For the first time, MIT engineers have designed sensors that can detect single protein molecules as they are secreted by cells.
Contracts signed for ELT mirrors and sensors
At a ceremony today at ESO's Headquarters four contracts were signed for major components of the Extremely Large Telescope (ELT) that ESO is building.
Pain sensors specialized for specific sensations
Many pain-sensing nerves in the body are thought to respond to all types of 'painful events', but new UCL research in mice reveals that in fact most are specialized to respond to specific types such as heat, cold or mechanical pain.
3-D-printed organ-on-a-chip with integrated sensors
Researchers have made the first entirely 3-D-printed organ-on-a-chip with integrated sensing.

Related Sensors Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.