Nav: Home

The developmental origins of osteoporosis

January 26, 2016

Osteoporosis may have its origins in early life, but the consequences are not apparent until late adult life, meaning that opportunities that can reduce its occurrence or severity may be overlooked. It remains an extremely common health burden in all societies, with enormous public health consequences due to the morbidity and mortality of the resulting fractures. Wood et al. discuss the developmental origins of osteoporosis and outline some of the modifiable and non-modifiable risk factors in early life, both antenatal and postnatal. They review data relating to birth size and early growth in both preterm and term born infants and emerging data on the role of epigenetic mechanisms.

Osteoporosis is primarily characterized by a depletion of bone mineral mass, but when combined with alterations in bone architecture results in greater bone fragility and increased fracture risks. Bone mineral content and density in adulthood depends predominantly on growth and mineralization and the peak bone mass achieved in early adulthood. Risks for osteoporosis are therefore determined early in life although the subsequent loss of bone mineral after peak bone mass is also an important factor. Bone mass shows strong tracking during childhood and adolescent growth and into adulthood. Genetic factors may account for differences and gender also influences bone composition with males attaining greater bone mass.

Environmental influences, especially modifiable lifestyle factors, during both childhood and adulthood include smoking, medication use e.g. corticosteroids, and exercise, although much of the variance in bone mass remains unexplained and may reflect differences in metabolic programming of systems controlling skeletal growth during critical periods. Optimizing early growth through diet has positive and lasting effects on bone mineralization, with breast milk exposure thought to be of major importance in certain groups.

Overall the paper provides strong evidence for the developmental origins of osteoporosis, and highlights the importance of prevention at all stages of the life course, including optimizing the in-utero environment and maternal nutrition, and the importance of infant nutrition as preventative strategies.
-end-


Bentham Science Publishers

Related Osteoporosis Articles:

New pharmaceutical target reverses osteoporosis in mice
Biomedical engineers at Duke University have discovered that an adenosine receptor called A2B can be pharmaceutically activated to reverse bone degradation caused by osteoporosis in mouse models of the disease.
A link between mitochondrial damage and osteoporosis
In healthy people, a tightly controlled process balances out the activity of osteoblasts, which build bone, and osteoclasts, which break it down.
Many stroke patients not screened for osteoporosis, despite known risks
Many stroke survivors have an increased risk of osteoporosis, falls or breaks when compared to healthy people.
Many postmenopausal women do not receive treatment for osteoporosis
The benefits of treating osteoporosis in postmenopausal women outweigh the perceived risks, according to a Clinical Practice Guideline issued today by the Endocrine Society.
A new 'atlas' of genetic influences on osteoporosis
A ground-breaking new study led by researchers from the Lady Davis Institute (LDI) at the Jewish General Hospital (JGH) has succeeded in compiling an atlas of genetic factors associated with estimated bone mineral density (BMD), one of the most clinically relevant factors in diagnosing osteoporosis.
New recommendations for the conduct of economic evaluations in osteoporosis
An expert working group has established recommendations for the design and conduct of economic evaluations in osteoporosis, as well as guidance for reporting these evaluations.
From receptor structure to new osteoporosis drugs
Researchers at the University of Zurich have determined the three-dimensional structure of a receptor that controls the release of calcium from bones.
How a Mediterranean diet could reduce osteoporosis
Eating a Mediterranean-type diet could reduce bone loss in people with osteoporosis -- according to new research from the University of East Anglia.
Osteoporosis drug may benefit heart health
The osteoporosis drug alendronate was linked with a reduced risk of cardiovascular death, heart attack, and stroke in a Journal of Bone and Mineral Research study of patients with hip fractures.
New treatment for osteoporosis provides better protection against fractures
A new treatment for osteoporosis provides major improvements in bone density and more effective protection against fractures than the current standard treatment.
More Osteoporosis News and Osteoporosis Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.