Nav: Home

Brain's wiring connected to sensory processing disorder

January 26, 2016

Researchers at UC San Francisco have found that boys and girls with sensory processing disorder (SPD) have altered pathways for brain connectivity when compared to typically developing children, and the difference predicts challenges with auditory and tactile processing.

The research, published Jan. 26, 2016, in the journal Frontiers in Neuroanatomy, is the biggest imaging study ever done in children with SPD. It's also the first to compare the white matter tracts in the brain of typically developing boys and girls versus those with an SPD diagnosis. The brain's white matter forms the "wiring" that links different areas of the brain and is therefore essential for perceiving, thinking and action.

Children with SPD struggle with processing stimulation, which can cause a wide range of symptoms, including hypersensitivity to sound, sight and touch. Many affected children also have poor fine motor skills, such as problems with holding a pencil, challenges with attention and profound difficulties with emotional regulation. Some SPD children cannot tolerate the sound of a vacuum cleaner or the touch of their loved ones. Furthermore, a sound that is an irritant one-day can be tolerated the next making parenting very confusing.

The study enrolled 40 right-handed boys and girls with SPD and 41 right-handed typically developing children, and examined the pathways for connectivity of specific white matter tracts in their brain using diffusion tensor imaging (DTI). The SPD and control subjects' behaviors were first characterized using a parent report measure of sensory behavior called the Sensory Profile. They also were given the Acoustic Index of the Differential Screening Test and a portion of the Sensory Integration Praxis Tests to directly measure auditory and tactile processing, respectively.

"By comparing the white matter in the brain of kids with SPD and typically developing kids, we were able to relate them to direct measurements of auditory and tactile function and find strong correlations between the white matter and sensory functioning," said senior author Pratik Mukherjee, MD, PhD, a professor of radiology and biomedical imaging and bioengineering at UCSF. "The children with SPD and the typically developing kids form a continuum, with the children with SPD at one extreme and sensory-typical at the other. This builds on the idea that SPD is a spectrum disorder and for the first time we have direct measurements, rather than solely relying on parent reports."

Examining Brain Wiring

The researchers used DTI to measure the structural connectivity of the kids in both groups. The advanced form of imaging measures the microscopic movement of water molecules within the brain and shows the direction of the white matter fibers and their integrity, thereby mapping the structural connections between brain regions. The microstructure of the white matter correlates with sensory functioning, especially in the back of the brain where tracts are responsible for relaying sensory information.

The imaging detected abnormal white matter tracts in the SPD subjects that serve as connections for the auditory, visual and somatosensory (tactile) systems involved in sensory processing, including their connections between the left and right halves of the brain. The abnormal microstructure of sensory white matter tracts shown by DTI in kids with SPD likely alters the timing of sensory transmission, so that processing of sensory stimuli and integrating information across multiple senses becomes difficult or impossible.

The results of the DTI had a stronger correlation with the direct measurements of tactile and auditory processing taken during the neurological testing than in the parent report survey, which the researchers say is likely due to the direct measurements being more objective.

"Knowing that the neurological testing is a strong predictor of what we'll see on the DTI means we can use it more confidently to calculate sensory challenges, and tailor our treatments to best help our patients," said Elysa Marco, MD, who led the study along with postdoctoral fellow Julia Owen, PhD, and Yi-Shin Chang, MS, in the department of radiology and biomedical imaging. "This ties directly into precision medicine - not relying on one size fits all for clinical diagnoses - but objectively assessing patients using quantifiable biomarkers to then personalize their treatment."

Pioneering Work

This new research follows UCSF's groundbreaking study published in 2013 that was the first to find that boys affected with SPD have quantifiable regional differences in brain structure when compared to typically developing boys. This work showed a biological basis for the disease but prompted the question of how these differences compared with other neurodevelopmental disorders and how it would manifest in girls.

SPD can be hard to pinpoint, as up to 90 percent of children with autism also are reported to have atypical sensory behaviors, and SPD has not been listed in the Diagnostic and Statistical Manual used by psychiatrists and psychologists. However, children with sensory-based dysfunction who do not meet the criteria for autism based on social communication deficits remain virtually unstudied.
The study's co-authors are Yi-Shin Chang, MS; Julia Owen, PhD; Shivani Desai, BS; Anne Brandes-Aitkin, BS; Susanna Hill, BS; Anne Arnett, MA; and Julia Harris, BS, all of UCSF.

This work was funded by grants from the Wallace Research Foundation to EJM and to PM and a gift from Toby Mickelson and Donald Brody to EJM. EJM has received neuroimaging support that contributed to this work from NIH K23 MH083890. The researchers also received generous support from the SPD community of family and friends through gifts large and small to the UCSF Sensory Neurodevelopment and Autism Program (SNAP.) The authors have reported that they have no conflicts of interest relevant to the contents of this paper to disclose.About UCSF: UC San Francisco (UCSF) is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic, biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and UCSF Health, which includes two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital San Francisco, as well as other partner and affiliated hospitals and healthcare providers throughout the Bay Area. Please visit

University of California - San Francisco

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...