Nav: Home

E-cigarette vapor boosts superbugs and dampens immune system

January 26, 2016

Researchers at the University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System report data suggesting that e-cigarettes are toxic to human airway cells, suppress immune defenses and alter inflammation, while at the same time boosting bacterial virulence. The mouse study is published January 25 by the Journal of Molecular Medicine.

"This study shows that e-cigarette vapor is not benign -- at high doses it can directly kill lung cells, which is frightening," said senior author Laura E. Crotty Alexander, MD, staff physician at the Veterans Affairs San Diego Healthcare System and assistant clinical professor at UC San Diego School of Medicine. "We already knew that inhaling heated chemicals, including the e-liquid ingredients nicotine and propylene glycol, couldn't possibly be good for you. This work confirms that inhalation of e-cigarette vapor daily leads to changes in the inflammatory milieu inside the airways."

Crotty Alexander reported the preliminary results of this work at the American Thoracic Society annual meetings in 2014 and 2015. But now her team has also seen their findings hold up in mice. Inflammatory markers -- signs of full-body inflammation -- in the airways and blood of mice that inhaled e-cigarette vapors for one hour a day, five days a week, for four weeks were elevated by 10 percent compared to unexposed mice.

"We don't know specifically which lung and systemic diseases will be caused by the inflammatory changes induced by e-cigarette vapor inhalation, but based on clinical reports of acute toxicities and what we have found in the lab, we believe that they will cause disease in the end," Crotty Alexander said. "Some of the changes we have found in mice are also found in the airways and blood of conventional cigarette smokers, while others are found in humans with cancer or inflammatory lung diseases."

Conversely, bacterial pathogens exposed to e-cigarette vapor benefited. Specifically, Staphylococcus aureus bacteria were better able to form biofilms, adhere to and invade airway cells and resist human antimicrobial peptides after exposure to e-cigarette vapor.

E-cigarette vapor extract-exposed bacteria were also more virulent in a mouse model of pneumonia. All mice infected with normal methicillin-resistant S. aureus (MRSA), an antibiotic-resistant "superbug," survived. Meanwhile, 25 percent of mice infected with MRSA pre-exposed to e-cigarette vapor died.

The results were consistent with e-liquids from seven different manufacturers, demonstrating that the findings are not limited to one formula or brand.

Crotty Alexander and team also recently reported that MRSA bacteria exposed to conventional cigarette smoke are more resistant to killing by the immune system than unexposed bacteria.
-end-
Study co-authors include John H. Hwang, Veterans Affairs San Diego Healthcare System and UC San Diego; Matthew Lyes, VA San Diego Healthcare System and Duke University; Katherine Sladewski, Denzil P. Mathew, Alexander Moshensky, VA San Diego Healthcare System; Shymaa Enany, Suez Canal University and VA San Diego Healthcare System; Elisa K. McEachern, VA San Diego Healthcare System and Weill Cornell Medical College; Soumita Das, David T. Pride, Weg M. Ongkeko, UC San Diego; and Sagar Bapat, Salk Institute for Biological Studies.

This research was funded by the U.S. Department of Veterans Affairs.

University of California - San Diego

Related Immune System Articles:

Using the immune system as a defence against cancer
Research published today in the British Journal of Cancer has found that a naturally occurring molecule and a component of the immune system that can successfully target and kill cancer cells, can also encourage immunity against cancer resurgence.
First impressions go a long way in the immune system
An algorithm that predicts the immune response to a pathogen could lead to early diagnosis for such diseases as tuberculosis
Filming how our immune system kill bacteria
To kill bacteria in the blood, our immune system relies on nanomachines that can open deadly holes in their targets.
Putting the break on our immune system's response
Researchers have discovered how a tiny molecule known as miR-132 acts as a 'handbrake' on our immune system -- helping us fight infection.
Decoding the human immune system
For the first time ever, researchers are comprehensively sequencing the human immune system, which is billions of times larger than the human genome.
Masterswitch discovered in body's immune system
Scientists have discovered a critical part of the body's immune system with potentially major implications for the treatment of some of the most devastating diseases affecting humans.
How a fungus can cripple the immune system
An international research team led by Professor Oliver Werz of Friedrich Schiller University, Jena, has now discovered how the fungus knocks out the immune defenses, enabling a potentially fatal fungal infection to develop.
How the immune system protects us against bowel cancer
Researchers from Charité - Universitätsmedizin Berlin have discovered a protective mechanism which is used by the body to protect intestinal stem cells from turning cancerous.
How herpesviruses shape the immune system
DZIF scientists at the Helmholtz Zentrum München have developed an analytic method that can very precisely detect viral infections using immune responses.
The immune system's fountain of youth
Helping the immune system clear away old cells in aging mice helped restore youthful characteristics.
More Immune System News and Immune System Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.