Nav: Home

A key mechanism has been discovered which prevents memory loss in Alzheimer's disease

January 26, 2016

Neurons communicate with one another by synaptic connections, where information is exchanged from one neuron to its neighbor. These connections are not static, but are continuously modulated in response to the ongoing activity (or experience) of the neuron. This process, known as synaptic plasticity, is a fundamental mechanism for learning and memory in humans as in all animals. In fact, we now know that alterations in synaptic plasticity are responsible for memory impairment in cognitive disorders such as Alzheimer's disease. Nevertheless, the mechanisms by which these alterations take place are still starting to be uncovered.

This new research work, published in KNature Neuroscience, has been led by Dr. Shira Knafo (Ikerbasque, Biophysics Unit: CSIC/The University of the Basque Country), Dr. Jose A. Esteban (Severo Ochoa Center for Molecular Biology, National Research Council/ Autonomous University of Madrid), and Dr. César Venero (Univ. Nacional de Educación a Distancia). These investigators have discovered that in Alzheimer's disease, synaptic plasticity is altered by a protein originally described as a tumor suppressor: PTEN. In 2010, the research group of Dr. Esteban discovered that PTEN is recruited to synapses during normal (physiological) synaptic plasticity. This new investigation by Drs. Knafo, Venero and Esteban, now indicates that this mechanism runs uncontrolled during Alzheimer's disease. One of the pathological agents of the disease, the beta-amyloid, drives PTEN into synapses excessively, unbalancing the mechanisms for synaptic plasticity and impairing memory formation.

An important aspect of this study is that it also describes how PTEN is recruited to synapses in response to beta-amyloid, and proposes a strategy to prevent it. Using a mouse model of Alzheimer's disease, the investigators developed a molecular tool to shield synapses from the recruitment of PTEN. With this tool, neurons are rendered resistant to beta-amyloid, and Alzheimer's mice preserve their memory.

Although this is basic research using animal models, these studies contribute to dissect the mechanisms that control our cognitive function, and orient us towards potential therapeutic avenues for mental diseases where these mechanisms are deficient.
-end-
Bibliographic reference

S. Knafo, C. Sánchez-Puelles, E. Palomer, I. Delgado, J.E. Draffin, J. Mingo, T. Wahle, K. Kaleka, L. Mou, I. Pereda-Peréz, E. Klosi, E.B. Faber, H.M. Chapman, L. Lozano-Montes, A. Ortega-Molina, L. Ordóñez-Gutiérrez, F. Wandosell, J. Viña, C.G. Dotti, R.A. Hall, R. Pulido, N.Z. Gerges, A.M. Chan, M.R. Spaller, M. Serrano, C. Venero, J.A. Esteban. PTEN Recruitment Controls Synaptic and Cognitive Function in Alzheimer's Models. Nature Neuroscience, Jan 2016.

University of the Basque Country

Related Neurons Articles:

New tool to identify and control neurons
One of the big challenges in the Neuroscience field is to understand how connections and communications trigger our behavior.
Neurons that regenerate, neurons that die
In a new study published in Neuron, investigators report on a transcription factor that they have found that can help certain neurons regenerate, while simultaneously killing others.
How neurons use crowdsourcing to make decisions
When many individual neurons collect data, how do they reach a unanimous decision?
Neurons can learn temporal patterns
Individual neurons can learn not only single responses to a particular signal, but also a series of reactions at precisely timed intervals.
A turbo engine for tracing neurons
Putting a turbo engine into an old car gives it an entirely new life -- suddenly it can go further, faster.
Brain neurons help keep track of time
Turning the theory of how the human brain perceives time on its head, a novel analysis in mice reveals that dopamine neuron activity plays a key role in judgment of time, slowing down the internal clock.
During infancy, neurons are still finding their places
Researchers have identified a large population of previously unrecognized young neurons that migrate in the human brain during the first few months of life, contributing to the expansion of the frontal lobe, a region important for social behavior and executive function.
How many types of neurons are there in the brain?
For decades, scientists have struggled to develop a comprehensive census of cell types in the brain.
Molecular body guards for neurons
In the brain, patterns of neural activity are perfectly balanced.
Engineering researchers use laser to 'weld' neurons
University of Alberta researchers have developed a method of connecting neurons, using ultrashort laser pulses -- a breakthrough technique that opens the door to new medical research and treatment opportunities.

Related Neurons Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".