Nav: Home

Mature heart muscle cells created in the laboratory from stem cells

January 26, 2017

Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists. Now, Johns Hopkins researchers report success in creating them in the laboratory by implanting stem cells taken from a healthy adult or one with a type of heart disease into newborn rat hearts.

The researchers say the host animal hearts provide the biological signals and chemistry needed by the implanted immature heart muscle cells to progress and overcome the developmental blockade that traditionally stops their growth in lab culture dishes or flasks.

In a summary of the work published Jan. 10 in Cell Reports, the researchers say their method should help advance studies of how heart disease develops, along with the development of new diagnostic tools and treatments.

"Our concept of using a live animal host to enable maturation of cardiomyocytes can be expanded to other areas of stem cell research and really opens up a new avenue to getting stem cells to mature," says Chulan Kwon, Ph.D., associate professor of medicine and member of the Johns Hopkins University School of Medicine's Institute for Cell Engineering, who led the study.

According to Kwon, cell biologists have been historically unable to induce heart muscle cells to get past the point in development characteristic of newborns, even when they let them mature in dishes for a year.

Those neonatal heart cells, Kwon explains, are smaller and rounder than mature adult heart cells and generate very low pumping force. As a result, he adds, they aren't the best model for heart muscle diseases, nor do they accurately mimic the biology and chemistry of adult heart tissue.

Kwon's group recently showed that cells kept and grown in lab dishes weren't turning on the proper genes needed to let the cells transition to maturity, a phenomenon they attributed to the artificial conditions of growing cells in a dish. But they also found that those genes were similar to those activated, or turned on, in the hearts of newborn rats.

In their initial experiments designed to overcome the developmental roadblock, the researchers first created a cell line of immature heart cells taken from mouse embryonic stem cells. They next tagged these cells with a fluorescent protein and injected about 200,000 of the cells into the ventricle or lower heart chamber of newborn nude rats -- rats with deficient immune systems that wouldn't attack and reject the newly introduced cells.

After about a week, Kwon reports, the fluorescent cells were still rounded and immature-looking. After a month, however, the cells looked like adult heart muscle cells -- elongated with striped patterns.

When the researchers compared 312 genes in the individual mouse cells grown in the rat hearts to the genes found in both immature heart cells and adult heart muscle cells, they found the cells grown in the rat hearts had more in common with genetics of adult heart muscle cells.

The investigators confirmed that the new heart-grown cells could contract or beat like normal adult heart muscle cells using a type of optical microscopy.

In the next set of proof-of-concept experiments, Kwon's team worked with human adult skin cells from a healthy human donor that were chemically converted back into a stem cell-like state -- known as induced pluripotent stem cells. A month after these cells were implanted into newborn rat hearts, the healthy human donor cells appeared rod-shaped and mature.

In the final proof-of-concept experiment, the researchers used induced pluripotent stem cells taken from a patient with arrhythmogenic right ventricular cardiomyopathy (ARVC), an inherited form of heart disease and a leading cause of sudden death in young adults. These cells were of special interest because the genetic mutation that causes AVRC leads to symptoms only after the heart cells mature.

After a month growing the human ARVC immature heart cells in the rat heart ventricles, the cells began to demonstrate properties of heart tissue from patients with the disease, Kwon says. Specifically, they accumulated lots of fat and had more cells dying than healthy cells appearing.

This last experiment, Kwon says, proves that researchers can now consistently grow mature cardiomyocytes from patients with specific heart diseases to better study these diseases and identify treatments.

Kwon cautions that clinical use of these lab-grown cells is years away. But, he says, "The hope is that our work advances precision medicine by giving us the ability to make adult cardiomyocytes from any patient's own stem cells." Having that capability, he says, means having a way to test each patient for old and new drug sensitivities and value, and to have a scalable process to create large cell sources for heart regeneration."
-end-
Other authors that contributed to the study include Gun-Sik Cho, Dong Lee, Emmanouil Tampakakis, Peter Andersen, Hideki Uosaki, Stephen Chelko, Khalid Chakir, Ingie Hong, Kinya Seo, Gordon Tomaselli, Brian O'Rourke, Daniel Judge and David Kass of the Johns Hopkins University School of Medicine; Huei-Sheng Vincent Chen of Sanford-Burnham Medical Discovery Institute; Xiongwen Chen and Steven Houser of Temple University; and Cristina Basso of the University of Padua.

The research was funded by the Magic That Matters Fund; the Maryland Stem Cell Research Fund (2015-MSCRFI-1622); grants from the National Heart, Lung, and Blood Institute (HL-0119012, HL-107153, R01 HL111198); the Eunice Kennedy Shriver National Institute of Child Health and Human Development (R01 HD086026); a TRANSAC Strategic Research Grant; and the Foundation Leducq.

Johns Hopkins Medicine

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
Stem cells in intestinal lining may shed light on behavior of cancer cells
The lining of the intestines -- the epithelium -- does more than absorb nutrients from your lunch.
More Stem Cells News and Stem Cells Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.