Nav: Home

New space weather model helps simulate magnetic structure of solar storms

January 26, 2017

The dynamic space environment that surrounds Earth - the space our astronauts and spacecraft travel through - can be rattled by huge solar eruptions from the sun, which spew giant clouds of magnetic energy and plasma, a hot gas of electrically charged particles, out into space. The magnetic field of these solar eruptions are difficult to predict and can interact with Earth's magnetic fields, causing space weather effects.

A new tool called EEGGL - short for the Eruptive Event Generator (Gibson and Low) and pronounced "eagle" - helps map out the paths of these magnetically structured clouds, called coronal mass ejections or CMEs, before they reach Earth. EEGGL is part of a much larger new model of the corona, the sun's outer atmosphere, and interplanetary space, developed by a team at the University of Michigan. Built to simulate solar storms, EEGGL helps NASA study how a CME might travel through space to Earth and what magnetic configuration it will have when it arrives. The model is hosted by the Community Coordinated Modeling Center, or CCMC, at NASA's Goddard Space Flight Center in Greenbelt, Maryland.

The new model is known as a "first principles" model because its calculations are based on the fundamental physics theory that describes the event - in this case, the plasma properties and magnetic free energy, or electromagnetics, guiding a CME's movement through space.

Such computer models can help researchers better understand how the sun will affect near-Earth space, and potentially improve our ability to predict space weather, as is done by the U.S. National Oceanic and Atmospheric Administration.

Taking into account the magnetic structure of a CME from its initiation at the sun could mark a big step in CME modeling; various other models initiate CMEs solely based on the kinematic properties, that is, the mass and initial velocity inferred from spacecraft observations. Incorporating the magnetic properties at CME initiation may give scientists a better idea of a CME's magnetic structure and ultimately, how this structure influences the CME's path through space and interaction with Earth's magnetic fields - an important piece to the puzzle of the sun's dynamic behavior.

The model begins with real spacecraft observations of a CME, including the eruption's initial speed and location on the sun, and then projects how the CME could travel based on the fundamental laws of electromagnetics. Ultimately, it returns a series of synthetic images, which look similar to those produced of actual observations from NASA and ESA's SOHO or NASA's STEREO, simulating the CME's propagation through space.

A team led by Tamas Gombosi at the University of Michigan's Department of Climate and Space Sciences and Engineering developed the model as part of its Space Weather Modeling Framework, which is also hosted at the CCMC. All of the CCMC's space weather models are available for use and study by researchers and the public through runs on request. In addition, EEGGL, and the model it supports, is the first "first principles" model to simulate CMEs including their magnetic structure open to the public.

NASA/Goddard Space Flight Center

Related Magnetic Fields Articles:

Visualizing strong magnetic fields with neutrons
Researchers at the Paul Scherrer Institute PSI have developed a new method with which strong magnetic fields can be precisely measured.
Scientists deepen understanding of magnetic fields surrounding Earth and other planets
Now, a team of scientists has completed research into waves that travel through the magnetosphere, deepening understanding of the region and its interaction with our own planet, and opening up new ways to study other planets across the galaxy.
Technique pulls interstellar magnetic fields within easy reach
A new, more accessible and much cheaper approach to surveying the topology and strength of interstellar magnetic fields -- which weave through space in our galaxy and beyond, representing one of the most potent forces in nature -- has been developed by researchers at the University of Wisconsin-Madison.
A bubbly new way to detect the magnetic fields of nanometer-scale particles
The method provides manufacturers with a practical way to measure and improve their control of the properties of magnetic nanoparticles for a host of medical and environmental applications.
Quantum sensing method measures minuscule magnetic fields
A new technique developed at MIT uses quantum sensors to enable precise measurements of magnetic fields in different directions.
More Magnetic Fields News and Magnetic Fields Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...