Nav: Home

Rapid gas flares discovered in white dwarf star for the first time

January 26, 2017

Incredibly rapid gas flares from a white dwarf binary star system have been detected for the first time by Oxford University scientists. The first sighting of such activity, it suggests that our current understanding of star habits and their capabilities is incomplete.

The rapid flares, which are extremely powerful, fast variations in brightness, occur when a star releases an enormous amount of energy, suddenly. Similar, but less energetic activity is seen in our Sun, where magnetic energy is released over a short time-span in solar flares. The unusual activity was observed at radio wavelengths in SS Cyg -- one of the brightest variable stars in the constellation of Cygnus, defying current understanding of gas accretion and the production of flares in these stars.

Dwarf novae (SS Cyg-like objects, which contain a Sun-like star orbiting a white dwarf star) are well known for their repeated, low-level, bursting behaviour (called "outbursts") but they have never been observed exhibiting behaviour on anything like the scale of rapid flares before.

Outbursts have previously been seen in white dwarfs, neutron stars and even enormous black holes residing in different galaxies. Such stars mainly feed on gas from their companion stars via accretion (where a large amount of gas is accumulated and builds up through gravitational force). Occasionally, these stars "throw up" some of the gas in the form of jets, which are powerful overflows of gas restricted to a single, narrow, cone-like flow.

Initial observations of the SS Cyg activity in February 2016 were considered an atypical outburst, but later telescopic analysis uncovered the intriguing revelation of rapid flares. The most fascinating and unexpected behaviour was observed at radio wavelengths towards the end of the outburst, when a "giant" flare was observed. Lasting for less than 15 minutes, it had the energy of more than a million times the strongest solar flares. The level of radio data recorded from the flare is unprecedented in dwarf nova systems and consistent with that expected from a jet.

Dr. Kunal Mooley, Astrophysics research fellow at Oxford University, who led the research, said: "Many of astrophysics' most compelling studies have been based on studying SS Cyg. The latest, a detection of a rapid, radio flare -- especially a fast, bright flare towards the end of the outburst, is highly unusual and demonstrates that there may even be some new physics at play. We expected to see slow variation flares, but found fast, rapid, cone-like spikes of activity and observed an enormous amount of energy being released in a time-span as short as ten minutes. Nothing like this has ever been seen before in a dwarf nova system.

"Moving forward, theorists should work with observers to find the answer to why these rapid flares occurred in SS Cyg. To really understand the process of gas accretion and gas expulsion in white dwarf systems - especially dwarf novae, similar studies should be carried out on other astrophysical systems."

First discovered over one hundred years ago, SS Cyg has been studied extensively by astronomers. The star continues to provide new insights into the physical processes associated with white dwarf binary systems, such as those found by Dr Mooley's team.

Dr Mooley and his team at Oxford are now conducting further analyses, and working to build a body of conclusive events about dwarf nova behaviours and establish if they are in fact capable of launching powerful jets.
-end-
Full findings were published in Monthly Notices of the Royal Astronomical Societyhttp://bit.ly/2jtnUFa

Findings are also available from Cornell University Library:https://arxiv.org/abs/1611.07064

For further information please contact Lanisha Butterfield in the University of Oxford press office at Lanisha.butterfield@admin.ox.ac.ukor on+44 (0)1865 280531

The Mathematical, Physical and Life Sciences Division (MPLS) is one of four academic divisions at the University of Oxford, representing the non-medical sciences. Oxford is one of the world's leading universities for science, and MPLS is at the forefront of scientific research across a wide range of disciplines. Research in the mathematical, physical and life sciences at Oxford was rated the best in the UK in the 2014 Research Excellence Framework (REF) assessment. MPLS received £133m in research income in 2014/15.

University of Oxford

Related Solar Flares Articles:

NASA's solar dynamics observatory captured trio of solar flares April 2-3
The sun emitted a trio of mid-level solar flares on April 2-3, 2017.
Chemists create molecular 'leaf' that collects and stores solar power without solar panels
An international research team centered at Indiana University have engineered a molecule that uses light or electricity to convert the greenhouse gas carbon dioxide into carbon monoxide -- a carbon-neutral fuel source -- more efficiently than any other method of 'carbon reduction.' The discovery, reported today in the Journal of the American Chemical Society, is a new milestone in the quest to recycle carbon dioxide in the Earth's atmosphere into carbon-neutral fuels and others materials.
NASA's Fermi sees gamma rays from 'hidden' solar flares
NASA's Fermi Gamma-ray Space Telescope has observed high-energy light from solar eruptions located on the far side of the sun -- light it shouldn't be able to see.
Rapid gas flares discovered in white dwarf star for the first time
Incredibly rapid gas flares from a white dwarf binary star system have been detected for the first time by Oxford University scientists.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
MinXSS CubeSat brings new information to study of solar flares
A new miniature satellite is observing a particular class of X-ray light that has rarely been studied.
Reducing gas flares -- and pollution -- from oil production
Last year, dozens of major oil companies and oil-producing nations agreed to end the routine flaring of natural gas from wells by 2030.
DASH diet may help prevent gout flares
New research indicates that a healthy diet can effectively lower blood levels of uric acid, a known trigger of gout.
MSU physicist develops new model for speed and motion of solar flares
A Montana State University physicist who has developed a new model that predicts the speed of solar plasma during solar flares, likening it to the path traveled by a thrown baseball, will present his findings at the Solar Physics Division of the American Astronomical Society conference being held this week in Boulder, Colorado.
Swept up in the solar wind
The sun's outer layer, the corona, constantly streams out charged particles called the solar wind.

Related Solar Flares Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Setbacks
Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".