Nav: Home

Getting out of hot water -- does mobile DNA help?

January 26, 2018

Extremophiles -- hardy organisms living in places that would kill most life on Earth -- provide fascinating insights into evolution, metabolism and even possible extraterrestrial life. A new study provides insights into how one type of extremophile, a heat-loving microbe that uses ammonia for energy production, may have been able to make the transition from hot springs to more moderate environments across the globe. The first-ever analysis of DNA of a contemporary heat-loving, ammonia-oxidizing organism, published in open-access journal Frontiers in Microbiology, reveals that evolution of the necessary adaptations may have been helped by highly mobile genetic elements and DNA exchange with a variety of other organisms.

Most extremophiles are microorganisms -- and many of the most extreme are archaea, an ancient group of single-celled organisms intermediate between the other two domains of life, bacteria and eukaryotes. Different archaea lineages are specialized to different extreme environments, including scalding hot springs, incredibly salty lakes, sunless deep-sea trenches and frigid Antarctic deserts. Only one branch, Thaumarchaeota, has managed to colonize very successfully the Earth's more hospitable places -- but scientists don't know why.

"Thaumarchaeota are found in very large numbers in virtually all environments, including the oceans, soils, plant leaves and the human skin," says Professor Christa Schleper from the University of Vienna, Austria, who guided and initiated the study. "We want to know what their secret is: billions of years ago, how did they adapt from hot springs, where it seems all archaea evolved, to more moderate habitats?"

As a starting point to answer this question, Professor Schleper and her team isolated a Thaumarchaeota species from a hot spring in Italy then sequenced and analyzed its genome. This represents the first genome analysis of the Nitroscaldus lineage -- a subgroup of heat-loving Thaumarchaeota that get their energy by oxidizing ammonia into nitrite.

The analysis revealed that the organism, Candidatus Nitrosocaldus cavascurensis, seems to represent the closest-related lineage to the last common ancestor of all Thaumarchaeota. Intriguingly, it has highly mobile DNA elements and seems to have frequently exchanged DNA with other organisms -- including other archaea, viruses and possibly even bacteria.

The ability to exchange genetic material could help this archaeon to rapidly evolve. "This organism seems prone to lateral gene transfer and invasion by foreign DNA elements," says Professor Schleper. "Such mechanisms may have also helped the ancestral lines of Thaumarchaeota to evolve and eventually radiate into moderate environments -- and N. cavascurensis may still be evolving through genetic exchange with neighboring organisms in its hot spring."

Many researchers assume that the first life forms on Earth evolved in hot springs. Further studies of this thermophile archaeon might help identify general mechanisms that enabled the first living cells, both bacteria and archaea, to conquer the world.
-end-


Frontiers

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".