Nav: Home

Research finds link between rainfall and ocean circulation in past and present

January 26, 2018

Research conducted at The University of Texas at Austin has found that changes in ocean currents in the Atlantic Ocean influence rainfall in the Western Hemisphere, and that these two systems have been linked for thousands of years.

The findings, published on Jan. 26 in Nature Communications, are important because the detailed look into Earth's past climate and the factors that influenced it could help scientists understand how these same factors may influence our climate today and in the future.

"The mechanisms that seem to be driving this correlation [in the past] are the same that are at play in modern data as well," said lead author Kaustubh Thirumalai, postdoctoral researcher at Brown University who conducted the research while earning his Ph.D. at the UT Austin Jackson School of Geosciences. "The Atlantic Ocean surface circulation, and however that changes, has implications for how the rainfall changes on continents."

Thirumalai conducted the work at The University of Texas Institute for Geophysics (UTIG), a research unit at the UT Jackson School of Geosciences. Co-authors include UTIG scientists, and researchers from the U.S. Geological Survey St. Petersburg Coastal and Marine Science Center and the Massachusetts Institute of Technology.

The Atlantic Ocean surface circulation is an important part of the Earth's global climate, moving warm water from the tropics towards the poles. The foundation of the research involved tracking the changes in ocean circulation in new detail by studying three sediment cores extracted from the seafloor of the Gulf of Mexico in 2010 during a scientific cruise. The samples give insight into factors that influenced the strength of the ocean current in about 30-year increments over the past 4,400 years.

"If we go back in increments of 30, we're well positioned to understand things on the order of centuries," Thirumalai said. "And the question we decided to ask was what can those reconstructions of temperature and salinity tell us about the greater Atlantic Ocean surface circulation."

The small time increments scientists were able to capture in the cores are due to the large amounts of sediment that empty into the Gulf from rivers in Mexico and North America. The scientists extracted data about temperature and salinity data--factors that influence ocean current strength-- from ocean-dwelling microorganisms called foraminifera preserved in the sediments.

The data showed that, in comparison to today, the Atlantic Ocean surface circulation was much weaker during the Little Ice Age, a cool period thought to be triggered by volcanic activity that lasted from 1450-1850. Since these set of ocean currents are known to influence global climate, the researchers were interested to see if it correlated with rainfall in the Western Hemisphere, and how such a correlation could change over time.

To calculate the correlation during the Little Ice Age, researchers compared the core data with proxies for precipitation data, such as data from tree rings, cave formations and other natural records. And to calculate the modern correlation, they compared data collected by humans during the last century on the temperature and salinity of the Gulf and rainfall in the Western Hemisphere. They also analyzed data from a climate model developed by the Max-Planck Institute for Meteorology in Germany to predict what the correlation between the current and rainfall would be expected to be during the Little Ice Age.

The results indicate that in present and past the Atlantic Ocean surface currents correlate with rainfall patterns in the Western Hemisphere. Thirumalai said that this finding is important for two reasons. It shows that a correlation exists between the current and rainfall patterns, and that the correlation is evident in data sets that cover different time scales.

"It was remarkable," Thirumalai said. "These patterns that are based on decadal analysis of modern data, and then the hydroclimate proxies that give the salinity in the oceans and the rainfall on land seem to show the same picture."

The findings emphasize the importance of the Atlantic Ocean surface circulation to rainfall, and that changes in the current can have far reaching impacts. That means that future changes to the Gulf's salinity and temperature could be expected to influence the climate in other ways.

"The study demonstrates a robust century-scale link between ocean circulation changes in the Atlantic basin and rainfall in the adjacent continents during the past 4,000 years," said UTIG Director Terry Quinn, a co-author on the study. "And hence it provides a baseline for predictions on how that part of the climate system may behave in the future."
-end-
The research was supported by the National Science Foundation, National Oceanic and Atmospheric Administration, the Consortium for Ocean Leadership, the UT Jackson School of Geosciences and Brown University.

University of Texas at Austin

Related Ice Age Articles:

Paintings, sunspots and frost fairs: Rethinking the Little Ice Age
The whole concept of the 'Little Ice Age' is 'misleading,' as the changes were small-scale, seasonal and insignificant compared with present-day global warming, a group of solar and climate scientists argue.
Ice age thermostat prevented extreme climate cooling
During the ice ages, an unidentified regulatory mechanism prevented atmospheric CO2 concentrations from falling below a level that could have led to runaway cooling, reports a study conducted by researchers of the ICTA-Universitat Autònoma de Barcelona and published online in Nature Geoscience this week.
Simple rule predicts when an ice age ends
A simple rule can accurately predict when Earth's climate warms out of an ice age, according to new research led by UCL.
How an Ice Age paradox could inform sea level rise predictions
New findings from the University of Michigan explain an Ice Age paradox and add to the mounting evidence that climate change could bring higher seas than most models predict.
Inception of the last ice age
A new model reconstruction shows in exceptional detail the evolution of the Eurasian ice sheet during the last ice age.
Ice age vertebrates had mixed responses to climate change
New research examines how vertebrate species in the eastern United States ranging from snakes to mammals to birds responded to climate change over the last 500,000 years.
Why does our planet experience an ice age every 100,000 years?
Experts from Cardiff University have offered up an explanation as to why our planet began to move in and out of ice ages every 100,000 years.
Siberian larch forests are still linked to the ice age
The Siberian permafrost regions include those areas of the Earth, which heat up very quickly in the course of climate change.
Mars is emerging from an ice age
Radar measurements of Mars' polar ice caps reveal that the mostly dry, dusty planet is emerging from an ice age, following multiple rounds of climate change.
New ice age knowledge
An international team of researchers headed by scientists from the Alfred Wegener Institute has gained new insights into the carbon dioxide exchange between ocean and atmosphere, thus making a significant contribution to solving one of the great scientific mysteries of the ice ages.

Related Ice Age Reading:

Ice Age
by John Gribbin (Author), Mary Gribbin (Author)

The Little Ice Age: How Climate Made History 1300-1850
by Brian Fagan (Author)

What Was the Ice Age?
by Nico Medina (Author), Who HQ (Author), David Groff (Illustrator)

Atlas of a Lost World: Travels in Ice Age America
by Pantheon

Geology of the Ice Age National Scenic Trail
by David M. Mickelson (Author), Louis J. Maher Jr. (Author), Susan L. Simpson (Author)

A New Little Ice Age Has Started: How to survive and prosper during the next 50 difficult years.

Cro-Magnon: How the Ice Age Gave Birth to the First Modern Humans
by Bloomsbury Press

First Peoples in a New World: Colonizing Ice Age America
by David J. Meltzer (Author)

On the Trail of the Ice Age Floods: A Geological Field Guide to the Mid-Columbia Basin
by Bruce Bjornstad (Author)

Cold Times: How to Prepare for the Mini Ice Age
by Dr. Anita Bailey PhD (Author), Trestudios . (Cover Design)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#514 Arctic Energy (Rebroadcast)
This week we're looking at how alternative energy works in the arctic. We speak to Louie Azzolini and Linda Todd from the Arctic Energy Alliance, a non-profit helping communities reduce their energy usage and transition to more affordable and sustainable forms of energy. And the lessons they're learning along the way can help those of us further south.