Nav: Home

Scientists get better numbers on what happens when electrons get wet

January 26, 2018

There's a particular set of chemical reactions that governs many of the processes around us--everything from bridges corroding in water to your breakfast breaking down in your gut. One crucial part of that reaction involves electrons striking water, and despite how commonplace this reaction is, scientists still have to use ballpark numbers for certain parts of the equation when they use computers to model them.

An article published in Nature Communications on Jan. 16 offers a new and better set of numbers from researchers at the University of Chicago, Argonne and Lawrence Livermore National Laboratories, and the University of California-San Diego. By improving computer models, these numbers may eventually help scientists and engineers create better ways to split water for hydrogen fuel and other chemical processes.

When an electron is injected into water, the liquid captures it. The energy gain due to this process is called the electron affinity of water, and it's key to understanding and modeling processes such as those occurring in photoelectrochemical cells to split water to generate oxygen and hydrogen, according to Alex Gaiduk, a postdoctoral fellow at UChicago and the lead author of the study.

Until now, scientists faced technical challenges while experimentally measuring the electron affinity of water, said coauthor Giulia Galli, the Liew Family Professor at the Institute for Molecular Engineering at the University of Chicago and senior scientist at Argonne.

"Most of the results quoted in the literature as experimental numbers are actually values obtained by combining some measured quantities with crude theoretical estimates," Galli said.

Accurate theoretical measurements have been out of reach for some time due to the difficulty and high computational cost of simulating the interactions of electrons with water, said University of California-San Diego Professor Francesco Paesani, a co-author of the study who has spent years developing an accurate potential for the modeling of liquid water. But through a combination of Paesani's models, Galli's group's theoretical methods and software and Argonne's supercomputer, they arrived at a new and surprising conclusion.

Fundamentally, the researchers sought to understand whether the liquid binds the electron right away. This determines whether the electron can eventually participate in chemical reactions as it hangs out in the liquid.

According to the results, the electron is bound, but its binding energy is much smaller than previously believed. This prompted the researchers to revisit a number of well-accepted data and models for the electron affinity of water.

"We found large differences between the affinity at the surface and in the bulk liquid. We also found values rather different from those accepted in the literature, which prompted us to revisit the full energy diagram of an electron in water," said Lawrence Livermore National Laboratory scientist and coauthor T.A. Pham.

This finding has important consequences both for the fundamental understanding of the properties of water, as well as for understanding a type of reaction called reduction/oxidation reactions in aqueous solutions. These reactions are widespread in chemistry and biology, including how cells break down food for energy and how objects corrode in water.

Particularly, the information about the energy levels of water is often used during the computational screening of materials for photoelectrochemical cells to break apart water to produce hydrogen as fuel. Having a reliable estimate of the water electron affinity will lead to more robust and reliable computational protocols and better computational screening, the researchers said.

The methods for excited states used in this study were developed over the years by Galli and her co-workers, within collaborations involving Pham and Marco Govoni from Argonne. The study also used supercomputing resources at Argonne.

University of Chicago

Related Hydrogen Articles:

Paving the way for hydrogen fuel cells
The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold.
Keeping the hydrogen coming
A coating of molybdenum improves the efficiency of catalysts for producing hydrogen.
Hydrogen bonds directly detected for the first time
For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope.
Argon is not the 'dope' for metallic hydrogen
Hydrogen is both the simplest and the most-abundant element in the universe, so studying it can teach scientists about the essence of matter.
Metallic hydrogen, once theory, becomes reality
Nearly a century after it was theorized, Harvard scientists have succeeded in creating metallic hydrogen.
From theory to reality: The creation of metallic hydrogen
For more than 80 years, it has been predicted that hydrogen will adopt metallic properties under certain conditions, and now researchers have successfully demonstrated this phenomenon.
Artificial leaf goes more efficient for hydrogen generation
A new study, affiliated with Ulsan National Institute of Science and Technology has introduced a new artificial leaf that generates hydrogen, using the power of the Sun to mimic underwater photosynthesis.
Hydrogen from sunlight -- but as a dark reaction
The storage of photogenerated electric energy and its release on demand are still among the main obstacles in artificial photosynthesis.
New process produces hydrogen at much lower temperature
Waseda University researchers have developed a new method for producing hydrogen, which is fast, irreversible, and takes place at much lower temperature using less energy.
Hydrogen in your pocket? New plastic for carrying and storing hydrogen
A Waseda University research group has developed a polymer which can store hydrogen in a light, compact and flexible sheet, and is safe to touch even when filled with hydrogen gas.

Related Hydrogen Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...