Two anti-viral enzymes transform pre-leukemia stem cells into leukemia

January 26, 2021

Since stem cells can continually self-regenerate, making more stem cells, and differentiate into many different specialized cell types, they play an important role in our development and health. But there can also be a dark side -- stem cells can sometimes become cancer stem cells, proliferating out of control and leading to blood cancers, such as leukemia and multiple myeloma. The self-renewing nature of cancer stem cells makes them particularly hard to eradicate, and they're often the reason a blood cancer reoccurs.

Researchers at UC San Diego Health and University of California San Diego School of Medicine are working to understand what pushes pre-cancer stem cells to transform into cancer stem cells and are developing ways to stop that switch.

Their latest study, published January 26, 2021 in Cell Reports, is the first to show that, in response to inflammation, two enzymes called APOBEC3C and ADAR1 work together to fuel the transition from pre-cancer stem cells to cancer stem cells in leukemia. Both APOBEC3C and ADAR1 are activated by inflammatory molecules, especially during the body's immune response to viruses.

The researchers also found they can prevent the formation of leukemia stem cells in the laboratory by inhibiting ADAR1 with fedratinib or ruxolitinib, two existing medications for myelofibrosis, a rare bone marrow cancer.

"APOBEC3C and ADAR1 are like the Bonnie and Clyde of pre-cancer stem cells -- they drive the cells into malignancy," said co-senior author Catriona Jamieson, MD, PhD, Koman Family Presidential Endowed Chair in Cancer Research, deputy director of Moores Cancer Center, director of the Sanford Stem Cell Clinical Center and director of the CIRM Alpha Stem Cell Clinic at UC San Diego Health.

Jamieson's team has long studied ADAR1, an enzyme that edits a cell's genetic material to control which genes are turned on or off at which times, and its role in leukemia stem cells. They also previously found that high ADAR1 levels correlate with reduced survival rates for patients with multiple myeloma.

In their new study, the researchers collected blood stem cells and saliva samples donated by 54 patients with leukemia and 24 healthy control participants. They compared the whole genome sequences of pre-leukemia stem cells and leukemia stem cells collected from the patients. They were surprised to discover an uptick in levels of both the enzyme APOBEC3C and ADAR1 during the progression to leukemia stem cell. APOBEC3C typically helps cells maintain genomic stability.

The team found that, in response to inflammation, APOBEC3C promotes the proliferation of human pre-leukemia stem cells. That sets the stage for ADAR1, which becomes overzealous in its editing, skewing gene expression in a way that supports leukemia stem cells. When the researchers inhibited ADAR1 activation or silenced the gene in patient cells in the laboratory, they were able to prevent the formation of leukemia stem cells.

APOBEC3C, ADAR1 and their roles in cancer stem cells are now the focus of Jamieson's NASA-funded project to develop the first dedicated stem cell research laboratory within the International Space Station (ISS).

That's because the NASA Twins Study -- a comprehensive biological comparison of identical twins Scott Kelly, who spent six months aboard the ISS, and Mark Kelly, who stayed on Earth -- revealed an increase in inflammatory growth factors, immune dysregulation and pre-cancer mutations in Scott's blood upon his return. These molecular changes, the perfect conditions to activate APOBEC3C and ADAR1, persisted for almost a year.

"Under the auspices of our NASA task order, we are now developing APOBEC3C and ADAR1 inhibitors as a risk mitigation strategy for astronauts, so we can hopefully predict and prevent pre-cancer stem cell generation in low-Earth orbit and on deep space missions," Jamieson said.

The team is also interested in further exploring the link between viral infections and cancer. According to Jamieson, infection with viruses can trigger a flood of cytokines, molecules that help stimulate the body's immune forces. As part of that response, ADAR1 is activated to help immune cells proliferate.

"We need APOBEC3C and ADAR to help us fight off viruses," she said. "So now we're wondering -- do these enzymes play a role in the immune response to COVID-19? And could there be a downside to that as well? Can the immune response to a viral infection later raise a person's risk of pre-cancer stem cell development and ultimately cancer stem cell generation, and can we intervene to prevent that?"
-end-
Additional co-authors of the study include: Qingfei Jiang, Jane Isquith, Luisa Ladel, Adam Mark, Cayla Mason, Yudou He, Phoebe Mondala, Isabelle Oliver, Jessica Pham, Wenxue Ma, Eduardo Reynoso, Shawn Ali, Isabella Jamieson Morris, Raymond Diep, Chanond Nasamran, Guorong Xu, Roman Sasik, Sara Brin Rosenthal, Amanda Birmingham, Sanja Coso, Gabriel Pineda, Leslie Crews, Mary Donohoe, Thomas Whisenant, Ludmil B. Alexandrov, Kathleen M. Fisch, UC San Diego; Frida Holm, Karolinska Institutet; JC Venter, J. Craig Venter Institute; and Ruben A. Mesa, UT Health San Antonio.

University of California - San Diego

Related Stem Cells Articles from Brightsurf:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.

More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.

Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.

The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.

Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.

New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.

NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.

Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.

Read More: Stem Cells News and Stem Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.