Nav: Home

Billion-year revision of plant evolution timeline may stem from discovery of lignin in seaweed

January 27, 2009

Land plants' ability to sprout upward through the air, unsupported except by their own woody tissues, has long been considered one of the characteristics separating them from aquatic plants, which rely on water to support them.

Now lignin, one of the chemical underpinnings vital to the self-supporting nature of land plants - and thought unique to them - has been found in marine algae by a team of researchers including scientists at UBC and Stanford University.

Lignin, a principal component of wood, is a glue-like substance that helps fortify cell walls and is instrumental in the transport of water in many plants.

In a study published in today's issue of the journal Current Biology, lead author Patrick Martone and colleagues describe using powerful chemical and microscopic anatomy techniques to identify and localize lignin within cell walls of a red alga that thrives along the wave-swept California coast. Martone conducted the work described in the paper while a graduate student and postdoctoral researcher in the laboratory of co-author Mark Denny, Professor of Biology at Stanford's Hopkins Marine Station.

"All land plants evolved from aquatic green algae and scientists have long believed that lignin evolved after plants took to land as a mechanical adaptation for stabilizing upright growth and transporting water from the root," says Martone, an assistant professor in the UBC Dept. of Botany, where he is continuing his work on lignin.

"Because red and green algae likely diverged more than a billion years ago, the discovery of lignin in red algae suggests that the basic machinery for producing lignin may have existed long before algae moved to land."

Alternatively, algae and land plants may have evolved the identical compound independently, after they diverged.

"The pathways, enzymes and genes that go into making this stuff are pretty complicated, so to come up with all those separately would be really, really amazing," says Denny. "Anything is possible, but that would be one hell of a coincidence."

The team's finding provides a new perspective on the early evolution of lignified support tissues - such as wood - on land, since the seaweed tissues that are most stressed by waves crashing on shore appear to contain the most lignin, possibly contributing to mechanical support, says Martone.

The new discovery may affect one of the ways land plants are distinguished from aquatic algae in textbooks - by the presence of lignin. It is also of interest to biofuel researchers since lignin binds cell walls and prevents the extraction of cellulose, a key component in biofuel production.

Funded primarily by the U.S. National Science Foundation and the U.S. Department of Energy, Martone says the research team has started looking for billion-year-old lignin genes that might be shared among land plants and red algae, and has started exploring whether lignin exists in other aquatic algae and what role it plays in the evolution and function of aquatic plants.
-end-
NB: Photos of the red seaweed are available at www.publicaffairs.ubc.ca/download.

The full study is available online at http://www.cell.com/current-biology/abstract/S0960-9822(08)01687-4.

University of British Columbia

Related Evolution Articles:

Prebiotic evolution: Hairpins help each other out
The evolution of cells and organisms is thought to have been preceded by a phase in which informational molecules like DNA could be replicated selectively.
How to be a winner in the game of evolution
A new study by University of Arizona biologists helps explain why different groups of animals differ dramatically in their number of species, and how this is related to differences in their body forms and ways of life.
The galloping evolution in seahorses
A genome project, comprising six evolutionary biologists from Professor Axel Meyer's research team from Konstanz and researchers from China and Singapore, sequenced and analyzed the genome of the tiger tail seahorse.
Fast evolution affects everyone, everywhere
Rapid evolution of other species happens all around us all the time -- and many of the most extreme examples are associated with human influences.
Landscape evolution and hazards
Landscapes are formed by a combination of uplift and erosion.
New insight into enzyme evolution
How enzymes -- the biological proteins that act as catalysts and help complex reactions occur -- are 'tuned' to work at a particular temperature is described in new research from groups in New Zealand and the UK, including the University of Bristol.
The evolution of Dark-fly
On Nov. 11, 1954, Syuiti Mori turned out the lights on a small group of fruit flies.
A look into the evolution of the eye
A team of researchers, among them a zoologist from the University of Cologne, has succeeded in reconstructing a 160 million year old compound eye of a fossil crustacean found in southeastern France visible.
Is evolution more intelligent than we thought?
Evolution may be more intelligent than we thought, according to a University of Southampton professor.
The evolution of antievolution policies
Organized opposition to the teaching of evolution in public schoolsin the United States began in the 1920s, leading to the famous Scopes Monkey trial.

Related Evolution Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".