Nav: Home

'Fishy' clue helps establish how proteins evolve

January 27, 2009

New Haven, Conn. -- Three billion years ago, a "new" amino acid was added to the alphabet of 20 that commonly make up proteins in organisms today. Now researchers at Yale and the University of Tokyo have demonstrated how this rare amino acid -- and, by example, other amino acids -- made its way into the menu for protein synthesis. The study appeared in the December 31 advance online publication of the journal Nature.

The rare amino acid the Yale researchers studied, pyrrolysine (Pyl), gave the researchers a molecular handle by being an extreme example of an amino acid that evolved to serve a highly specific need.

The amino acid alphabet shapes the language of proteins. When the genetic code was deciphered four decades ago, scientists believed that there were no more than 20 amino acid "letters" that universally meshed with the nucleic acid part of the protein code. But, like many alphabets, the language of proteins has letters with modifications -- like accent marks -- that modify their use.

When cells make proteins, a tightly coordinated pair of molecules -- a tRNA and a tRNA synthetase -- ensure that the correct amino acid is added in a growing protein chain. These molecules are highly specific for the amino acid they "manage" and are coded directly in the genome. All of the 20 common amino acids are incorporated into proteins in this way. However, only two uncommon amino acids, including Pyl, have been discovered that follow this pattern.

In most cases, an uncommon amino acid in proteins -- like letters with accent marks -- results from modification of one of the standard 20 amino acids after it has become part of the protein. Many human proteins are modified in this way, and deficiencies in these modifications are linked to myriad human diseases including cancer, neurodegeneration, and metabolic disorders.

"Pyl turns out to be special because it represents an uncommon amino acid that is incorporated during normal protein synthesis," said Yale postdoctoral fellow and lead co-author Patrick O'Donoghue. "This is the key difference that makes Pyl so interesting and valuable to molecular biologists. It opens the door to engineering the genetic code."

Pyl is so rare that it has been found in only seven organisms. Each of these microbes evolved in an unusual environmental niche and all use methylamines -- the compounds that make fish smell "fishy" -- as a source of energy. Söll's research team characterized and crystallized the molecules that "manage" Pyl and created images that show how these molecules have evolved to work together.

"This is the handle we needed to effectively produce an 'expanded' genetic code," said O'Donoghue. "Now we have the ability to directly genetically encode other uncommon amino acids. By doing that, we will be able to isolate the role of particular modifications and to begin to understand their functions and their role in human disease."

"We have found why it is probably not accidental that out of more than 300 amino acids found in natural proteins, only two have been added beyond the standard 20-member amino acid alphabet," said principal investigator Dieter Söll, Sterling Professor of Molecular Biophysics & Biochemistry and professor of chemistry at Yale.

"This work provides a tantalizing glimpse into how proteins have evolved in living cells," said Laurie Tompkins, who oversees protein synthesis grants at the National Institutes of Health's National Institute of General Medical Sciences, which partially supported the work. "The unique way in which the synthetase binds its tRNA substrate is a testament to the ancient roots of this remarkable enzyme."
-end-
The research was supported by grants from the National Institute of General Medical Sciences, the Department of Energy and the National Science Foundation, as well as the Japan Science and Technology Agency, the Japanese National Project on Protein Structural and Functional Analyses, the Mitsubishi Foundation, and the Kurata Memorial Hitachi Science and Technology Foundation. Patrick O'Donoghue holds a National Science Foundation postdoctoral fellowship in biological informatics.

Citation: Nature (31 Dec 2008), doi: 10.1038/nature07611.

Patrick O'Donoghue patrick@trna.chem.yale.edu

Dieter Soll http://www.mbb.yale.edu/faculty/pages/soll.html

Molecular Biophysics & Biochemistry http://www.mbb.yale.edu/index.html

doi: 10.1038/nature07611 http://www.nature.com/nature/journal/vaop/ncurrent/abs/nature07611.html

Yale University

Related Amino Acids Articles:

A unique amino acid for brain cancer therapy
Researchers discover potential application of amino acid taurine in photodynamic therapy for brain cancer.
Nickel: A greener route to fatty acids
Chemists designed a nickel catalyst that easily transforms petroleum feedstocks into valuable compounds like fatty acids.
Amino acids in diet could be key to starving cancer
Cutting out certain amino acids - the building blocks of proteins -- from the diet of mice slows tumor growth and prolongs survival, according to new research published in Nature.
How to brew high-value fatty acids with brewer's yeast
Researchers at Goethe University Frankfurt have succeeded in producing fatty acids in large quantities from sugar or waste containing sugar with the help of yeasts.
Diverse natural fatty acids follow 'Golden Mean'
Bioinformatics scientists at Friedrich Schiller University in Jena (Germany) have discovered that the number of theoretically possible fatty acids with the same chain length but different structures can be determined with the aid of the famous Fibonacci sequence.
Simple fats and amino acids to explain how life began
Life is a process that originated 3.5 billion years ago.
Newly revealed amino acid function could be used to boost antioxidant levels
A Japanese research team has become the first in the world to discover that 2-aminobutyric acid is closely involved in the metabolic regulation of the antioxidant glutathione, and that it can effectively raise levels of glutathione in the body when ingested.
An amino acid controls plants' breath
IBS plant scientists demonstrate that the amino acid L-methionine activates a calcium-channel regulating the opening and closing of tiny plant pores.
Genetic differences in amino acid metabolism are linked to a higher risk of diabetes
A study published today in the journal PLOS Medicine has identified the five genetic variants associated with higher levels of the branched-chain amino acids isoleucine, leucine and valine.
Withholding amino acid depletes blood stem cells, Stanford researchers say
A new study shows that a diet deficient in valine effectively depleted the blood stem cells in mice and made it possible to perform a blood stem cell transplantation on them.

Related Amino Acids Reading:

A Guide to Amino Acid and Protein Nutrition: Essential Amino Acid Solutions for Everyone (The EAASE Program)
by Dr. Robert Wolfe PhD (Author)

Amino Acids in Therapy: A Guide to the Therapeutic Application of Protein Constituents
by Leon Chaitow D.O. N.D. (Author)

Thorsons Guide to Amino Acids
by Leon Chaitow (Author)

Heal with Amino Acids and Nutrients
by Ph.D., C.N.C Billie J. Sahley (Author), C.R.N.A., Ph.D. Katherine M. Birkner (Author)

Amino Acids: Biochemistry and Nutrition
by Guoyao Wu (Author)

The Healing Nutrients Within: Facts, Findings, and New Research on Amino Acids
by Eric R. Braverman (Author)

Excitatory Amino Acid Transmission in Health and Disease
by Oxford University Press

Whole Protein Vegetarian: Delicious Plant-Based Recipes with Essential Amino Acids for Health and Well-Being
by Rebecca Ffrench (Author)

Recharge Your Body and Mind with Amazing Amino Acids
by Dr. Daniel S. Smith D.C. (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Circular
We're told if the economy is growing, and if we keep producing, that's a good thing. But at what cost? This hour, TED speakers explore circular systems that regenerate and re-use what we already have. Guests include economist Kate Raworth, environmental activist Tristram Stuart, landscape architect Kate Orff, entrepreneur David Katz, and graphic designer Jessi Arrington.
Now Playing: Science for the People

#504 The Art of Logic
How can mathematics help us have better arguments? This week we spend the hour with "The Art of Logic in an Illogical World" author, mathematician Eugenia Cheng, as she makes her case that the logic of mathematics can combine with emotional resonance to allow us to have better debates and arguments. Along the way we learn a lot about rigorous logic using arguments you're probably having every day, while also learning a lot about our own underlying beliefs and assumptions.