Diverse natural fatty acids follow 'Golden Mean'

January 27, 2017

Jena (Germany) Mild in flavour and of great nutritional value: the light-yellow vegetable oil pressed from sunflower seeds has a wide range of uses and is extremely healthy, as it contains a large proportion of unsaturated fatty acids. These are fatty acids with hydrocarbon chains that contain one or more double bonds. "As these double bonds can occur at different places in the molecule, there are fatty acids with the same chain length, but a different structure," explains Prof. Stefan Schuster of Friedrich Schiller University Jena (Germany). The work of the professor for Bioinformatics and his team is driven by the question of whether and how the total number of structural formulas of fatty acids with a given chain length can be calculated, so as to be able to use this quantity for analytical processes.

The efforts of the Jena University researchers recently led to an interesting discovery. They were able to prove not only that the number of naturally occurring fatty acids with increasing chain length can be predicted in an elegant fashion, but in the respected journal 'Scientific Reports', they also show that this number is in line with the well-known Fibonacci sequence (DOI: 10.1038/srep39821). In this sequence, named after the Italian mathematician Fibonacci (around 1170 to 1240), each number is the sum of the two previous numbers: 1, 1, 2, 3, 5, 8, 13, 21, etc. "In the case of fatty acids, this means that the number of possible fatty acid structures increases by a factor of approximately 1.618... with each additional carbon atom," explains Schuster. The longer the chain, the closer the sequence gets to this factor. While only one structure is possible for chain lengths with one or two carbon atoms, when there are three or more carbon atoms, this number increases to two, three, five, etc. "Six atoms already give us eight possibilities, with seven carbon atoms there are 13 possible structures, and so on."

The factor 1.618... describes a ratio that is known as the 'Golden Mean' (also called Golden Ratio or Golden Section) and can be observed in nature, but also in art. It can be found, for example, in architectural masterpieces, such as the old town hall in Leipzig, but also in flowers, snail shells, and even in the human body. If the proportions of parts of buildings, plants or bodies are in a ratio of 1.618 to one another, the human eye experiences this as particularly balanced and 'harmonious'.

"The leaves of many plants or the seeds of the sunflower are also arranged according to this rule," says Prof. Severin Sasso of the Institute of General Botany and Plant Physiology of the University of Jena. The Assistant Professor for Molecular Botany is one of the authors of the recent publication, alongside doctoral candidate Maximilian Fichtner. "It is interesting that specific substances contained in sunflowers - the fatty acids - follow this principle." However, sunflower oil contains by no means all possible fatty acids. It consists mainly of fatty acids with a chain length of 16 or 18 carbon atoms. According to the calculations done by the bioinformatics researchers in Jena, there could be just under 1000 variants of fatty acids with a chain length of 16 atoms or over 2500 variants for those with 18 atoms. "Similar correlations also occur in certain classes of amino acids," adds Maximilian Fichtner.

The findings relating to the Fibonacci sequence in fatty acids can be applied above all in the field of lipidomics - the comprehensive analysis of all fats in a cell or an organism. "An exact knowledge of the substances that can theoretically occur is essential for this work," notes Prof. Schuster. Lipidomics is used to study the metabolic processes and interactions with other cellular substances in which fats and their constituent elements are involved.

Original Publication:

Schuster S et al. Use of Fibonacci numbers in lipidomics - enumerating various classes of fatty acids. Scientific Reports 7 (2017) 39821, DOI: 10.1038/srep39821.


Prof. Stefan Schuster
Chair of Bioinformatics of Friedrich Schiller University, Jena
Ernst-Abbe-Platz 2, 07743 Jena, Germany
Phone: +49 (0)3641 / 949580
E-mail: stefan.schu@uni-jena.de

Friedrich-Schiller-Universitaet Jena

Related Fatty Acids Articles from Brightsurf:

A new tool to create chemical complexity from fatty acids
A new catalyst design enables unprecedented control over the modification of fatty acid derivatives that opens the door to creating useful substances in a green and efficient manner.

The ova of obese women have lower levels of omega-3 fatty acids
A study conducted by researchers from the UPV/EHU, Cruces Hospital, the IVI Clinic Bilbao and Biocruces Bizkaia shows that the oocytes of obese or overweight women have a different composition of fatty acids.

Scientists use light to convert fatty acids into alkanes
Researchers led by Prof. WANG Feng at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences have reported that photocatalytic decarboxylation is an efficient alternate pathway for converting biomass-derived fatty acids into alkanes under mild conditions of ambient temperature and pressure.

Microbes from humics lakes produced omega-3 fatty acids from micropla
The environmental fate of microplastics has been difficult to trace.

Efficiently producing fatty acids and biofuels from glucose
Researchers have presented a new strategy for efficiently producing fatty acids and biofuels that can transform glucose and oleaginous microorganisms into microbial diesel fuel, with one-step direct fermentative production.

Omega-3 fatty acids tied to fewer childhood asthma symptoms
A six-month study of children from Baltimore City by Johns Hopkins Medicine researchers has added to evidence that having more omega-3 fatty acids in the diet results in fewer asthma symptoms triggered by indoor air pollution.

Could omega-3 fatty acids help prevent miscarriages?
A new study in mice reveals that omega-3s, a type of fat found in fish oil, reduces fetal and neonatal deaths, suggesting they could prevent some miscarriages in women.

Researchers reveal prostate tumors 'fed' by fatty acids
An international multidisciplinary study initiated by Melbourne scientists has shown a link between prostate cancer and the uptake of fatty acids by cancer cells.

A hidden route for fatty acids can make cancers resistant to therapy
Researchers from the lab of Prof. Sarah-Maria Fendt at the VIB-KU Leuven Center for Cancer Biology now demonstrate that certain tumor cells use an alternative -- previously unexplored -- pathway to produce fatty acids.

Sunscreen and cosmetics compound may harm coral by altering fatty acids
Although sunscreen is critical for preventing sunburns and skin cancer, some of its ingredients are not so beneficial to ocean-dwelling creatures.

Read More: Fatty Acids News and Fatty Acids Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.