Nav: Home

Physics: Toward a practical nuclear pendulum

January 27, 2017

Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element. This is a major step toward a nuclear clock that could keep even better time than today's best atomic timekeepers.

Atomic clocks are the most precise chronometers we now have. These timekeepers are based on precise knowledge of the frequency of specific transitions between defined energy levels in the electron shells of certain atoms. Theoretical studies suggest that nuclear clocks that make use of analogous changes in the energy states of atomic nuclei could provide even more accurate frequency standards for timekeeping purposes. Research teams around the world are now exploring ways of turning this theoretical possibility into a practical reality.

Early last summer, physicists Dr. Peter Thirolf, Lars von der Wense and Benedict Seiferle at LMU's Chair of Medical Physics, in collaboration with colleagues in Mainz and Darmstadt, achieved a notable breakthrough in the quest to develop a functioning nuclear clock. In a paper published in the journal Nature, they reported the first experimental detection of a specific energy transition in the nucleus of a particular isotope of the element thorium (Th) that had been predicted decades ago. The nucleus of this unstable isotope, which has an atomic weight of 229, is the only nucleus known to have the properties required for the development of a practical nuclear clock.

With financial support from the EU-funded project nuClock, Thirolf, von der Wense and Seiferle have continued to characterize the energy transition in the 229Th nucleus, and have now succeeded in measuring the lifetime of the excited nuclear state. Their findings appear in the journal Physical Review Letters.

"This represents the direct experimentally determined value for the half-life of the excited state of the isotope 229Th," says Benedict Seiferle. The LMU team now plans to measure the energy of the transition itself. With these data in hand, it should be possible in the future to optically induce the transition in a controlled fashion with the help of an appropriately designed laser.
-end-


Ludwig-Maximilians-Universität München

Related Energy Articles:

Quantum vacuum: Less than zero energy
According to quantum physics, energy can be 'borrowed' -- at least for some time.
New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.
How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.
Energy from seawater
A new battery made from affordable and durable materials generates energy from places where salt and fresh waters mingle.
Shifts to renewable energy can drive up energy poverty, PSU study finds
Efforts to shift away from fossil fuels and replace oil and coal with renewable energy sources can help reduce carbon emissions but do so at the expense of increased inequality, according to a new Portland State University study
Putting that free energy around you to good use with minuscule energy harvesters
Scientists at Tokyo Tech developed a micro-electromechanical energy harvester that allows for more flexibility in design, which is crucial for future IoT applications.
A new way to transfer energy between cells
Researchers have described a new method for the transmission of electrons between proteins that refutes the evidence from experiments until now.
Renewable energy cooperatives, an opportunity for energy transition
Three researchers from the UPV/EHU's Faculty of Engineering -- Bilbao and the University of Valladolid have explored how renewable energy cooperatives have evolved.
MIT Energy Initiative study reports on the future of nuclear energy
In new MIT report, study authors analyze the reasons for the current global stall of nuclear energy capacity and discuss measures that could be taken to arrest and reverse that trend.
Wave energy converters are not geared towards the increase in energy over the last century
Wave energy converters are designed to generate the maximum energy possible in their location and take a typical year in the location as a reference.
More Energy News and Energy Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.