Physics: Toward a practical nuclear pendulum

January 27, 2017

Researchers from Ludwig-Maximilians-Universitaet (LMU) Munich have, for the first time, measured the lifetime of an excited state in the nucleus of an unstable element. This is a major step toward a nuclear clock that could keep even better time than today's best atomic timekeepers.

Atomic clocks are the most precise chronometers we now have. These timekeepers are based on precise knowledge of the frequency of specific transitions between defined energy levels in the electron shells of certain atoms. Theoretical studies suggest that nuclear clocks that make use of analogous changes in the energy states of atomic nuclei could provide even more accurate frequency standards for timekeeping purposes. Research teams around the world are now exploring ways of turning this theoretical possibility into a practical reality.

Early last summer, physicists Dr. Peter Thirolf, Lars von der Wense and Benedict Seiferle at LMU's Chair of Medical Physics, in collaboration with colleagues in Mainz and Darmstadt, achieved a notable breakthrough in the quest to develop a functioning nuclear clock. In a paper published in the journal Nature, they reported the first experimental detection of a specific energy transition in the nucleus of a particular isotope of the element thorium (Th) that had been predicted decades ago. The nucleus of this unstable isotope, which has an atomic weight of 229, is the only nucleus known to have the properties required for the development of a practical nuclear clock.

With financial support from the EU-funded project nuClock, Thirolf, von der Wense and Seiferle have continued to characterize the energy transition in the 229Th nucleus, and have now succeeded in measuring the lifetime of the excited nuclear state. Their findings appear in the journal Physical Review Letters.

"This represents the direct experimentally determined value for the half-life of the excited state of the isotope 229Th," says Benedict Seiferle. The LMU team now plans to measure the energy of the transition itself. With these data in hand, it should be possible in the future to optically induce the transition in a controlled fashion with the help of an appropriately designed laser.
-end-


Ludwig-Maximilians-Universität München

Related Energy Articles from Brightsurf:

Energy System 2050: solutions for the energy transition
To contribute to global climate protection, Germany has to rapidly and comprehensively minimize the use of fossil energy sources and to transform the energy system accordingly.

Cellular energy audit reveals energy producers and consumers
Researchers at Gladstone Institutes have performed a massive and detailed cellular energy audit; they analyzed every gene in the human genome to identify those that drive energy production or energy consumption.

First measurement of electron energy distributions, could enable sustainable energy technologies
To answer a question crucial to technologies such as energy conversion, a team of researchers at the University of Michigan, Purdue University and the University of Liverpool in the UK have figured out a way to measure how many 'hot charge carriers' -- for example, electrons with extra energy -- are present in a metal nanostructure.

Mandatory building energy audits alone do not overcome barriers to energy efficiency
A pioneering law may be insufficient to incentivize significant energy use reductions in residential and office buildings, a new study finds.

Scientists: Estonia has the most energy efficient new nearly zero energy buildings
A recent study carried out by an international group of building scientists showed that Estonia is among the countries with the most energy efficient buildings in Europe.

Mapping the energy transport mechanism of chalcogenide perovskite for solar energy use
Researchers from Lehigh University have, for the first time, revealed first-hand knowledge about the fundamental energy carrier properties of chalcogenide perovskite CaZrSe3, important for potential solar energy use.

Harvesting energy from walking human body Lightweight smart materials-based energy harvester develop
A research team led by Professor Wei-Hsin Liao from the Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong (CUHK) has developed a lightweight smart materials-based energy harvester for scavenging energy from human motion, generating inexhaustible and sustainable power supply just from walking.

How much energy do we really need?
Two fundamental goals of humanity are to eradicate poverty and reduce climate change, and it is critical that the world knows whether achieving these goals will involve trade-offs.

New discipline proposed: Macro-energy systems -- the science of the energy transition
In a perspective published in Joule on Aug. 14, a group of researchers led by Stanford University propose a new academic discipline, 'macro-energy systems,' as the science of the energy transition.

How much energy storage costs must fall to reach renewable energy's full potential
The cost of energy storage will be critical in determining how much renewable energy can contribute to the decarbonization of electricity.

Read More: Energy News and Energy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.