Nav: Home

Beetles born on the edge make invasion faster

January 27, 2017

Just a little bit of help from evolution allows invasive species to disperse farther and faster, according to Rice University scientists.

Rice graduate student Brad Ochocki and ecologist Tom Miller, using the bean beetle as their model, found that generations born on the leading edge of an invasion are far more able to push on than those born further back. That has implications for agriculture and natural-resource managers who struggle to predict and prepare for the spread of invasive species.

The team's results were reported today in Nature Communications.

The researchers chose to work with common bean beetles for their relative ease of maintenance and their rapid reproduction, Miller said, noting that the species spawns a new generation about once a month.

The researchers bred 10 generations of the insects in their Rice lab and found that beetles at the leading edge of an invasion, where food is more plentiful and competition less fierce, produced more offspring with the right genetic traits to carry on in the same pioneering spirit.

Ochocki called this the "Olympic Village Effect," known by scientists as the assumption that, were Olympians to reproduce during the games, their offspring would likely carry forward evolutionary advantages for strength and agility.

That notion has real-world relevance for those who track invasive plants and animals. "We want to understand this process of spread because it's happening more and more through biological invasions, especially with climate change," Miller said. "Ecologists are under pressure to predict something about this process.

"We obviously want to understand what's happening outside, but it's impossibly hard because we can't replicate the spread of cane toads across Australia, gypsy moths across the Northeast or zebra mussels in the Great Lakes, for example," he said. "To understand the distribution of variability, we created simple landscapes in the laboratory. We realized we could distill this very complicated process to simple ingredients."

Ochocki, who studied biomedical engineering and mechanical engineering as an undergraduate, designed and built game board-like habitats stocked with black-eyed peas. The beetles lay eggs on the surface, and the resulting larvae burrow in and feed on the peas as they mature.

He started each colony with less than 100 insects, evenly split between males and females. Tunnels between the petri dishes allowed the most pioneering among them to spread from one to the next in search of new territory. Ochocki estimates the lab manipulated and observed about 293,000 beetles over 10 months of gathering data.

The researchers ran two sets of experiments: In one, colonies were left to their own devices to expand with the expectation that the insects on the leading edge of a colony would be more prone to advance. Control experiments eliminated this "spatial sorting" by periodically shuffling colony members between different dishes.

The results showed, first, that spatially sorted colonies -- those where pioneers were not reshuffled -- tended to disperse an average of 8.9 percent farther than control groups whose members were shuffled. Second, the experiments demonstrated that spatially sorted populations were more inclined to spread out, with the variance in their patterns of dispersal -- where and how far they traveled -- increasing 41-fold.

Those results are not good news for those who study invasive species or disease dynamics, Miller said.

"Farmers and other people who have an interest in maintaining a natural resource are good at detecting initial outbreaks," he said. "When they detect a new corn pest in a field, they want to know how far might it get the next season and how far ahead of a wave they should warn growers to spray for this new bug.

"What Brad found is that even in this controlled laboratory setting, which is the simplest of all possible worlds, the process of evolution itself can generate uncertainty and variability in how populations move," Miller said. He said that uncertainty means scientists are unlikely to ever perfect the process of predicting invasion dynamics. "That is kind of sobering."

But including the effects of evolution can better define the range of possibilities, Ochocki said. "We suggest in the paper that accounting for evolution won't necessarily enable you to have an accurate point prediction, but it will give you a window of possible scenarios," he said.

Miller and Ochocki said the rapid turnover of beetle generations left little time for genetic mutation to influence spread, but they said gene surfing was a likely contributor. In gene surfing, traits present at the leading edge of an invasion can ride the wave of expansion to become abundant in newly founded populations. In this case, the random genes brought to the edge of the invasion by dispersing beetles likely generated the increase in variance that Ochocki and Miller observed. Shuffling of beetles during invasion appeared to dampen the effect.

Ochocki and Miller aren't the only researchers using insects to investigate invasion. A group at the University of Colorado, Boulder, led by Christopher Weiss-Lehman, performed similar experiments using flour beetles that led to essentially the same results. They were published along with the Rice paper by Nature Communications.

"It's a very nice demonstration that our results and theirs are not flukes," said Miller, who learned of the work by his Colorado counterparts at a meeting several years ago. "That's why the journal was interested in publishing them side by side; they said in their review that they rarely get an opportunity to independently validate results like this."
-end-
Miller is the James and Deborah Godwin Assistant Professor of Ecology and Evolutionary Biology at Rice.

The National Science Foundation supported the research. Computing resources were supplied by the NSF-supported DAVinCI supercomputer, which was procured in partnership with Rice's Ken Kennedy Institute for Information Technology and is administered by Rice's Center for Research Computing.

Read the abstract at http://www.nature.com/articles/ncomms14315#abstract

This news release can be found online at http://news.rice.edu/2017/01/27/beetles-born-on-the-edge-make-invasion-faster/

Read the University of Colorado, Boulder news release at http://www.colorado.edu/today/2017/01/27/rapid-trait-evolution-crucial-species-growth-cu-boulder-study-finds

Follow Rice News and Media Relations via Twitter @RiceUNews

Video:https://youtu.be/Afma90GhsfE Video produced by Brandon Martin/Rice University

Related materials:

Miller Lab: http://www.owlnet.rice.edu/~tm9/

Rice Department of BioSciences: http://biosciences.rice.edu/EEB_GradAdmissions.aspx

Rice University

Related Evolution Articles:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.
Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.
A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.
Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?
Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.
Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.
Evolution of aesthetic dentistry
One of the main goals of dental treatment is to mimic teeth and design smiles in the most natural and aesthetic manner, based on the individual and specific needs of the patient.
An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
More Evolution News and Evolution Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.