Nav: Home

New 'needle-pulse' beam pattern packs a punch

January 27, 2017

A new beam pattern devised by University of Rochester researchers could bring unprecedented sharpness to ultrasound and radar images, burn precise holes in manufactured materials at a nano scale -- even etch new properties onto their surfaces.

These are just a few of the items on the "Christmas tree" of possible applications for the beam pattern that Miguel Alonso, professor of optics, and Kevin Parker, the William F. May Professor of Engineering, describe in a recent paper in Optics Express.

The pattern results from what Parker calls "an analytically beautiful mathematical solution" that Alonso devised. It causes a light or sound wave to collapse inward, forming -- during a mere nanosecond or less -- an incredibly thin, intense beam before the wave expands outward again.

"All the energy fits together in time and space so it comes together -- BAM! -- like a crescendo," says Parker, explosively clapping his hands for emphasis. "It can be done with an optical light wave, with ultrasound, radar, sonar -- it will work for all of them."

Most traditional beam patterns maintain a persistent shape as long as the source is operating. However, they are not as intense as the beam created by Parker and Alonso, which the researchers call a "needle pulse beam." "It is very localized, with no extensions or side lobes that would carry energy away from the main beam," says Alonso.

Side lobes, radiating off a beam like the halos sometimes seen around a car headlight, are especially problematic in ultrasound. "Side lobes are the enemy," Alonso says. "You want to direct all of your ultrasound wave to the one thing you want to image, so then, whatever is reflected back will tell you about that one thing. If you're also getting a diffusion of waves elsewhere, it blurs the image."

Because it is incredibly narrow, the new beam "makes it possible to resolve things at exquisite resolutions, where you need to separate tiny things that are close together," Parker says, adding that the beam could have applications not only for ultrasound, but microscopy, radar, and sonar.

According to Alonso, industrial applications might include any form of laser materials processing that involves putting as much light as possible on a given line.

The idea for the needle pulse beam originated with Parker, an expert in ultrasound, who for inspiration often peruses mathematical functions from a century or more ago in the "ancient texts."

"I could see a general form of the solution; but I couldn't get past the equation," he says "So I went to the person (Alonso) who I consider the world's leading expert on optical theory and mathematics."

They came up with various expressions that were "mathematically correct," Alonso says, but corresponded to beams requiring an infinite amount of energy. The solution--"a particular mathematical trick" that could apply to a beam with finite energy -- came to him while swimming with his wife in Lake Ontario.

"Many of the ideas I have do not happen at my desk," Alonso says. "It happens while I'm riding my bicycle, or in the shower, or swimming, or doing something else--away from all the paperwork."

Parker says this discovery continues an international quest that began at the University of Rochester. In 1986 -- in the face of worldwide skepticism -- a University team including Joseph Eberly, the Andrew Carnegie Professor of Physics and professor of optics, offered evidence of an unexpected new, diffraction-free light form. The so-called Bessel beam is now widely used.

"It had been decades since anyone formulated a new type of beam," Parker says. "Then, as soon as the Bessel beam was announced, people were thinking there may be other new beams out there. The race was on.

"Finding a new beam pattern is a like finding a new element. It doesn't happen very often."

University of Rochester

Related Ultrasound Articles:

Ultrasound aligns living cells in bioprinted tissues
Researchers have developed a technique to improve the characteristics of engineered tissues by using ultrasound to align living cells during the biofabrication process.
Ultrasound for thrombosis prevention
Researchers established real-time ultrasonic monitoring of the blood's aggregate state using the in vitro blood flow model.
Ultra ultrasound to transform new tech
A new, more sensitive method to measure ultrasound may revolutionize everything from medical devices to unmanned vehicles.
Shoulder 'brightness' on ultrasound may be a sign of diabetes
A shoulder muscle that appears unusually bright on ultrasound may be a warning sign of diabetes, according to a new study.
Ultrasound-firewall for mobile phones
Mobile phones and tablets through so-called audio tracking, can be used by means of ultrasound to unnoticeably track the behaviour of their users: for example, viewing certain videos or staying in specific rooms and places.
Designing a new material for improved ultrasound
Development of a theoretical basis for ultrahigh piezoelectricity in ferroelectric materials led to a new material with twice the piezo response of any existing commercial ferroelectric ceramics, according to an international team of researchers from Penn State, China and Australia.
Atomic structure of ultrasound material not what anyone expected
Lead magnesium niobate (PMN) is a prototypical
American Institute of Ultrasound in Medicine (AIUM) takes steps to improve the quality of ultrasound imaging in obstetrics and gynecology
The American Institute of Ultrasound in Medicine (AIUM) convened a forum tasked with developing a roadmap for quality improvement in ultrasound imaging in obstetrics and gynecology and set up a task force to establish a consensus curriculum and competency assessment tools for residency training.
Augmented tongue ultrasound for speech therapy
Researchers have developed a system that can display the movements of our own tongues in real time.
Ultrasound imaging of the brain and liver
Ultrasound is commonly used in diagnostic imaging of the body's soft tissues, including muscles, joints, tendons and internal organs.
More Ultrasound News and Ultrasound Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.