Nav: Home

New 'needle-pulse' beam pattern packs a punch

January 27, 2017

A new beam pattern devised by University of Rochester researchers could bring unprecedented sharpness to ultrasound and radar images, burn precise holes in manufactured materials at a nano scale -- even etch new properties onto their surfaces.

These are just a few of the items on the "Christmas tree" of possible applications for the beam pattern that Miguel Alonso, professor of optics, and Kevin Parker, the William F. May Professor of Engineering, describe in a recent paper in Optics Express.

The pattern results from what Parker calls "an analytically beautiful mathematical solution" that Alonso devised. It causes a light or sound wave to collapse inward, forming -- during a mere nanosecond or less -- an incredibly thin, intense beam before the wave expands outward again.

"All the energy fits together in time and space so it comes together -- BAM! -- like a crescendo," says Parker, explosively clapping his hands for emphasis. "It can be done with an optical light wave, with ultrasound, radar, sonar -- it will work for all of them."

Most traditional beam patterns maintain a persistent shape as long as the source is operating. However, they are not as intense as the beam created by Parker and Alonso, which the researchers call a "needle pulse beam." "It is very localized, with no extensions or side lobes that would carry energy away from the main beam," says Alonso.

Side lobes, radiating off a beam like the halos sometimes seen around a car headlight, are especially problematic in ultrasound. "Side lobes are the enemy," Alonso says. "You want to direct all of your ultrasound wave to the one thing you want to image, so then, whatever is reflected back will tell you about that one thing. If you're also getting a diffusion of waves elsewhere, it blurs the image."

Because it is incredibly narrow, the new beam "makes it possible to resolve things at exquisite resolutions, where you need to separate tiny things that are close together," Parker says, adding that the beam could have applications not only for ultrasound, but microscopy, radar, and sonar.

According to Alonso, industrial applications might include any form of laser materials processing that involves putting as much light as possible on a given line.

The idea for the needle pulse beam originated with Parker, an expert in ultrasound, who for inspiration often peruses mathematical functions from a century or more ago in the "ancient texts."

"I could see a general form of the solution; but I couldn't get past the equation," he says "So I went to the person (Alonso) who I consider the world's leading expert on optical theory and mathematics."

They came up with various expressions that were "mathematically correct," Alonso says, but corresponded to beams requiring an infinite amount of energy. The solution--"a particular mathematical trick" that could apply to a beam with finite energy -- came to him while swimming with his wife in Lake Ontario.

"Many of the ideas I have do not happen at my desk," Alonso says. "It happens while I'm riding my bicycle, or in the shower, or swimming, or doing something else--away from all the paperwork."

Parker says this discovery continues an international quest that began at the University of Rochester. In 1986 -- in the face of worldwide skepticism -- a University team including Joseph Eberly, the Andrew Carnegie Professor of Physics and professor of optics, offered evidence of an unexpected new, diffraction-free light form. The so-called Bessel beam is now widely used.

"It had been decades since anyone formulated a new type of beam," Parker says. "Then, as soon as the Bessel beam was announced, people were thinking there may be other new beams out there. The race was on.

"Finding a new beam pattern is a like finding a new element. It doesn't happen very often."

University of Rochester

Related Ultrasound Articles:

Ultrasound imaging of the brain and liver
Ultrasound is commonly used in diagnostic imaging of the body's soft tissues, including muscles, joints, tendons and internal organs.
Ultrasound for children with abdominal trauma
Despite evidence showing that the routine use of sonography in hospital emergency departments can safely improve care for adults when evaluating for possible abdominal trauma injuries, researchers at UC Davis Medical Center could not identify any significant improvements in care for pediatric trauma patients.
New approach uses ultrasound to measure fluid in the lungs
A team of engineering and medical researchers has found a way to use ultrasound to monitor fluid levels in the lung, offering a noninvasive way to track progress in treating pulmonary edema -- fluid in the lungs -- which often occurs in patients with congestive heart failure.
Optical generation of ultrasound via photoacoustic effect
Limitations of the piezoelectric array technologies conventionally used for ultrasonics inspired researchers to explore an alternative mechanism for generating ultrasound via light (the photoacoustic effect).
New method to detect ultrasound with light
A tiny, transparent device that fits into a contact lens can determine the speed of blood flow and oxygen metabolic rate at the back of the eye, helping to diagnose diseases such as macular degeneration.
How to 'sharpen' an ultrasound scalpel
Researchers from the Laboratory for Industrial and Medical Ultrasound of M.V.
Controlling ultrasound with 3-D printed devices
Researchers have 3-D printed a new kind of device that can harness high-pressure ultrasound to move, manipulate, or destroy tiny objects like particles, drops or biological tissue at scales comparable with cells.
Study links autism severity to genetics, ultrasound
For children with autism and a class of genetic disorders, exposure to diagnostic ultrasound in the first trimester of pregnancy is linked to increased autism severity, according to a study by researchers at UW Medicine, UW Bothell and Seattle Children's Research Institute.
Designing ultrasound tools with Lego-like proteins
Protein engineering techniques might one day lead to colorful ultrasound images of cells deep within our bodies.
Dialing up chemotherapy for pancreatic cancer with ultrasound
Researchers at Haukeland University Hospital in Bergen, Norway have combined a laboratory ultrasound technique called 'sonoporation' with the commercially-available chemotherapy compound Gemcitabine to increase the porosity of pancreatic cells with microbubbles and to help get the drug into cancer cells where it is needed.

Related Ultrasound Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...