Nav: Home

Seismic biomarkers in Japan Trench fault zone reveal history of large earthquakes

January 27, 2020

In the aftermath of the devastating Tohoku-Oki earthquake that struck off the coast of Japan in March 2011, seismologists were stunned by the unprecedented 50 meters of shallow displacement along the fault, which ruptured all the way to the surface of the seafloor. This extreme slip at shallow depths exacerbated the massive tsunami that, together with the magnitude 9.1 earthquake, caused extensive damage and loss of life in Japan.

In a new study, published January 27 in Nature Communications, researchers used a novel technique to study the faults in the Japan Trench, the subduction zone where the Tohoku-Oki earthquake struck. Their findings reveal a long history of large earthquakes in this fault zone, where they found multiple faults with evidence of more than 10 meters of slip during large earthquakes.

"We found evidence of many large earthquakes that have ruptured to the seafloor and could have generated tsunamis like the one that struck in 2011," said coauthor Pratigya Polissar, associate professor of ocean sciences at UC Santa Cruz.

Japanese researchers looking at onshore sediment deposits have found evidence of at least three similar tsunamis having occurred in this region at roughly 1,000-year intervals. The new study suggests there have been even more large earthquakes on this fault zone than those that left behind onshore evidence of big tsunamis, said coauthor Heather Savage, associate professor of Earth and planetary sciences at UC Santa Cruz.

Savage and Polissar have developed a technique for assessing the history of earthquake slip on a fault by analyzing organic molecules trapped in sedimentary rocks. Originally synthesized by marine algae and other organisms, these "biomarkers" are altered or destroyed by heat, including the frictional heating that occurs when a fault slips during an earthquake. Through extensive laboratory testing over the past decade, Savage and Polissar have developed methods for quantifying the thermal evolution of these biomarkers and using them to reconstruct the temperature history of a fault.

The Japan Trench Fast Drilling Project (JFAST) drilled into the fault zone in 2012, extracting cores and installing a temperature observatory. UCSC seismologist Emily Brodsky helped organize JFAST, which yielded the first direct measurement of the frictional heat produced by the fault slip during an earthquake (see earlier story). This heat dissipates after the earthquake, however, so the signal is small and transient.

"The biomarkers give us a way to detect permanent changes in the rock that preserve a record of heating on the fault," Savage said.

For the new study, the researchers examined the JFAST cores, which extended through the fault zone into the subducting plate below. "It's a complex fault zone, and there were a lot of faults throughout the core. We were able to say which faults had evidence of large earthquakes in the past," Savage said.

One of their goals was to understand whether some rock types in the fault zone were more prone to large slip in an earthquake than other rocks. The cores passed through layers of mudstones and clays with different frictional strengths. But the biomarker analysis showed evidence of large seismic slip on faults in all the different rock types. The researchers concluded that differences in frictional properties do not necessarily determine the likelihood of large shallow slip or seismic hazard.

Savage and Polissar began working on the biomarker technique as postdoctoral researchers at UC Santa Cruz, publishing their first paper on it with Brodsky in 2011. They continued developing it as researchers at the Lamont-Doherty Earth Observatory of Columbia University, before returning to UC Santa Cruz as faculty members in 2019. Hannah Rabinowitz, the first author of the new paper, worked with them as a graduate student at Columbia and is now at the U.S. Department of Energy.

"We've tested this technique in different rocks with different ages and heating histories, and we can now say yes, there was an earthquake on this fault, and we can tell if there was a large one or many small ones," Savage said. "We can now take this technique to other faults to learn more about their histories."

In addition to Rabinowitz, Savage, and Polissar, the coauthors of the paper include Christie Rowe and James Kirkpatrick at McGill University. This work was funded by the National Science Foundation. The JFAST project was sponsored by the International Ocean Drilling Program (IODP).

University of California - Santa Cruz

Related Earthquake Articles:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.
How earthquake swarms arise
A new fault simulator maps out how interactions between pressure, friction and fluids rising through a fault zone can lead to slow-motion quakes and seismic swarms.
Typhoon changed earthquake patterns
Intensive erosion can temporarily change the earthquake activity (seismicity) of a region significantly.
Cause of abnormal groundwater rise after large earthquake
Abnormal rises in groundwater levels after large earthquakes has been observed all over the world, but the cause has remained unknown due to a lack of comparative data before & after earthquakes.
New clues to deep earthquake mystery
A new understanding of our planet's deepest earthquakes could help unravel one of the most mysterious geophysical processes on Earth.
Fracking and earthquake risk
Earthquakes caused by hydraulic fracturing can damage property and endanger lives.
Earthquake symmetry
A recent study investigated around 100,000 localized seismic events to search for patterns in the data.
Crowdsourcing speeds up earthquake monitoring
Data produced by Internet users can help to speed up the detection of earthquakes.
Geophysics: A surprising, cascading earthquake
The Kaikoura earthquake in New Zealand in 2016 caused widespread damage.
How fluid viscosity affects earthquake intensity
A young researcher at EPFL has demonstrated that the viscosity of fluids present in faults has a direct effect on the intensity of earthquakes.
More Earthquake News and Earthquake Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.