Nav: Home

How to take a picture of a light pulse

January 27, 2020

Today, modern lasers can generate extremely short light pulses, which can be used for a wide range of applications from investigating materials to medical diagnostics. For this purpose, it is important to measure the shape of the laser light wave with high accuracy. Until now, this has required a large, complex experimental setup. Now this can be done with a tiny crystal with a diameter of less than one millimeter. The new method has been developed by the MPI for Quantum Optics in Garching, the LMU Munich and the TU Wien (Vienna). The advance will now help to clarify important details about the interaction of light and matter.

Looking at Light with Electrons

Extremely short light pulses with a duration in the order of femtoseconds (10-15 seconds) were investigated. "In order to create an image of such light waves, they must be made to interact with electrons," says Prof. Joachim Burgdörfer from the Institute of Theoretical Physics at the TU Wien. "The reaction of the electrons to the electric field of the laser gives us very precise information about the shape of the light pulse".

Previously, the common way to measure an infrared laser pulse was adding a much shorter laser pulse with a wavelength in the X-ray range. Both pulses are sent through a gas. The X-ray pulse ionizes individual atoms, electrons are released, which are then accelerated by the electric field of the infrared laser pulse. The motion of the electrons is recorded, and if the experiment is carried out many times with different time shifts between the two pulses, the shape of the infrared laser pulse can eventually be reconstructed. "The experimental effort required for this method is very high," says Prof. Christoph Lemell (TU Vienna). "A complicated experimental setup is needed, with vacuum systems, many optical elements and detectors."

Measurement in Tiny Silicon Oxide Crystals

To bypass such complications, the idea was born to measure light pulses not in a gas but in a solid: "In a gas you have to ionize atoms first to get free electrons. In a solid it is sufficient to give the electrons enough energy so that they can move through the solid, driven by the laser field", says Isabella Floss (TU Vienna). This generates an electric current which can be directly measured.

Tiny crystals of silicon oxide with a diameter of a few hundred micrometers are used for this purpose. They are hit by two different laser pulses: The pulse which is to be investigated can have any wavelength ranging from ultraviolet light and visible colours to long-wave infrared. While this laser pulse penetrates the crystal, another infrared pulse is fired at the target. "This second pulse is so strong that non-linear effects in the material can change the energy state of the electrons so that they become mobile. This happens at a very specific point in time, which can be tuned and controlled very precisely," explains Joachim Burgdörfer.

As soon as the electrons can move through the crystal, they are accelerated by the electric field of the first beam. This produces an electric current which is measured directly at the crystal. This signal contains precise information about the shape of the light pulse.

Many Possible Applications

At TU Wien, the effect was studied theoretically and analysed in computer simulations. The experiment was performed at the Max Planck Institute for Quantum Optics in Garching. "Thanks to the close cooperation between theory and experiment, we have been able to show that the new method works very well, over a large frequency range, from ultraviolet to infrared," says Christoph Lemell. "The waveform of light pulses can now be measured much more easily than before, with the help of such a much simpler and more compact setup."

The new method opens up many interesting applications: It should be possible to precisely characterize novel materials, to answer fundamental physical questions about the interaction of light and matter, and even to analyze complex molecules - for example, to reliably and quickly detect diseases by examining tiny blood samples.

Prof. Christoph Lemell
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T +43-1-58801-13612

Prof. Joachim Burgdörfer
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T +43-1-58801-13610

Dipl.-Ing. Isabella Floss
Institute for Theoretical Physics
TU Wien
Wiedner Hauptstraße 8-10, 1040 Vienna
T +43-1-58801-13605

Vienna University of Technology

Related Electrons Articles:

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.
Flatter graphene, faster electrons
Scientists from the Swiss Nanoscience Institute and the Department of Physics at the University of Basel developed a technique to flatten corrugations in graphene layers.
Researchers develop one-way street for electrons
The work has shown that these electron ratchets create geometric diodes that operate at room temperature and may unlock unprecedented abilities in the illusive terahertz regime.
Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.
Using light to put a twist on electrons
Method with polarized light can create and measure nonsymmetrical states in a layered material.
What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.
Electrons in rapid motion
Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique.
Taming electrons with bacteria parts
In a new study, scientists at the MSU-DOE Plant Research Laboratory report a new synthetic system that could guide electron transfer over long distances.
Hot electrons harvested without tricks
Semiconductors convert energy from photons into an electron current. However, some photons carry too much energy for the material to absorb.
Cooling nanotube resonators with electrons
In a study in Nature Physics, ICFO researchers report on a technique that uses electron transport to cool a nanomechanical resonator near the quantum regime.
More Electrons News and Electrons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at