Nav: Home

Human Body-on-Chip platform enables in vitro prediction of drug behaviors in humans

January 27, 2020

(BOSTON) -- Drug development is an extremely arduous and costly process, and failure rates in clinical trials that test new drugs for their safety and efficacy in humans remain very high. According to current estimates, only 13.8% of all tested drugs demonstrate ultimate clinical success and obtain approval by the Food and Drug Administration (FDA). There are also increasing ethical concerns relating to the use of animal studies. As a result, there has been a world-wide search to find replacements for animal models.

To help address this bottleneck in drug development, Donald Ingber, M.D., Ph.D., and his team at Harvard's Wyss Institute for Biologically Inspired Engineering, developed the first human "Organ-on-a-Chip" (Organ Chip) model of the lung that recapitulates human organ level physiology and pathophysiology with high fidelity, which was reported in Science in 2010. Organ Chips are microfluidic culture devices composed of a clear flexible polymer the size of a computer memory stick, which contains two parallel hollow channels that are separated by a porous membrane. Organ-specific cells are cultured on one side of the membrane in one of the channels, and vascular endothelial cells recapitulating a blood vessel line the other, while each channel is independently perfused with cell type-specific medium. The porous membrane allows the two compartments to communicate with each other, and to exchange molecules like cytokines, growth factors, and drugs, as well as drug breakdown products generated by organ-specific metabolic activities.

One example where living animals must be used in preclinical testing is the characterization of a drug's "pharmacokinetics" (PK) that involves the quantification of its absorption, distribution, metabolism, and excretion (ADME), which together determine drug levels in the blood. These responses involve interplay between many different organs linked by a vasculature containing flowing blood. Animals are also used to analyze drug "pharmacodynamics" (PD), the effects the drug produces on its target organs, which underlies its mechanism of action as well as its adverse effects.

Because the Wyss Institute's Organ Chips contain an endothelium-lined vascular channel, Ingber proposed in 2011 that it might be possible to create a human "Body-on-Chips" by transferring fluids between the vascular channels of many different types of Organ Chips to mimic blood flow, and assessing drug PK/PD behaviors across the entire linked system. Inspired by this vision and the realization that existing animal-based development programs are inadequate to confront the needs for accelerated development of drug countermeasures in a biothreat situation, the Defense Advanced Research Projects Agency (DARPA) requested grant applications in 2012 with a seemingly impossible challenge: develop 10 types of Organ Chips that recapitulate the complex functionalities of 10 different human organs, engineer an automated instrument to fluidically link them to create a functional human Body-on-Chips platform, and leverage computational modeling in combination with experimental data generated using this platform to quantitatively predict human drug PK/PD behavior in vitro. Now, two back-to-back publications in Nature Biomedical Engineering, describe the Wyss team's success in meeting this goal in full.

Known for posing impossible challenges such as this, DARPA understands that most investigators will not meet the goals as set out, but that extraordinary technological fallout will be created along the way. "We were very proud to obtain major funding support from DARPA to take on this challenge, and we are now even more proud that we have successfully met their goal, which would not have been possible without the exceptional talents, interdisciplinary spirit, and monumental team effort at the Wyss Institute," said Ingber, who is the Wyss Founding Director, as well as the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital, and Professor of Bioengineering at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). He has been leading the DARPA-funded program along with Wyss Core Faculty member Kevin Kit Parker, Ph.D., who also is the Tarr Family Professor of Bioengineering and Applied Physics at SEAS.

In their first article, the Wyss team presents a highly modular Body-on-Chips platform, which is enabled by an engineered "Interrogator" instrument that can culture up to 10 different Organ Chips, and sequentially transfer fluids between their endothelium-lined vascular channels to mimic normal human blood flow between the different organs of our body. In the second article, the team uses a computational scaling method to translate data obtained from drug experiments involving 3 different types of fluidically-linked Organ Chips to their respective organ dimensions in the real human body. The approach is able to quantitatively predict changes in drug levels over time, as well as organ-specific toxicities, that have been previously measured in human patients.

"Both studies represent a tremendous effort by scores of researchers at the Wyss Institute, who worked together with our industrial modeling collaborators, and pooled their collective tissue engineering, microfabrication, pharmacological, physiological, and computational expertise to make this huge advance in preclinical drug testing possible," said Rachelle Prantil-Baun, Ph.D., a Wyss Institute Senior Staff Scientist with past experience in the pharmaceutical industry who helped to orchestrate this complex multi-investigator effort with multiple other staff members in the Wyss' Bioinspired Therapeutics and Diagnostics platform.

The Interrogator instrument enabled the team to culture, perfuse and link many living human cultured tissues in a multi-Organ Chip system, as well as add and sample the medium in a fully programmable way, using the device's robotic liquid transfer capabilities, while continuously monitoring tissue integrity with an integrated microscope. "In this study, we serially linked the vascular channels of eight different Organ Chips, including intestine, liver, kidney, heart, lung, skin, blood-brain barrier and brain, using a highly optimized common blood substitute, while independently perfusing the individual channels lined by organ-specific cells. The instrument maintained the viability of all tissues and their organ-specific functions for over three weeks and, importantly, it allowed us to quantitatively predict the tissue-specific distribution of a chemical across the entire system," said Richard Novak, Ph.D., a co-first-author on both studies. Novak is a Senior Staff Engineer at the Wyss Institute who designed, fabricated, and operated the Interrogator instrument with his bioengineering team.

In the second study, the team used the Interrogator instrument to support two different configurations of 3 different Organ Chips linked to each other and to a central arterio-venous (AV) fluid mixing reservoir that helped recapitulate life-like blood and drug exchange between the individual organs, while also providing a way to carry out blood sampling that would mimic blood drawing from a peripheral vein. The researchers coupled a human Gut Chip with a Liver Chip and a Kidney Chip and added nicotine to the Gut Chip's channel lined by intestinal epithelium to simulate oral administration of this drug, and its first pass through the intestinal wall and via the vascular system to the liver where it is metabolized, and to the kidney where it is excreted. Nicotine chewing gum is used to help with smoking cessation; however, it is also being investigated as an oral drug for neurodegenerative and inflammatory bowel diseases.

Applying mass spectrometry analysis, the Wyss team quantified nicotine levels in the AV reservoir and the effluents of the vascular channels of all the different Organ Chips, and then fitted the data with a newly developed biomimetic scaling approach that translates them from the dimensions of the Organ Chips to their actual organ dimensions in the human body. For the first time, this computational approach combined with experimental human Organ Chip data demonstrated the ability to model drug uptake and metabolism, and quantitatively predict dynamic changes in drug blood levels (PK) that previously were observed in human clinical trials. The scaling approach, which also solves the challenge of drug adsorption into materials in the experimental system, was developed by co-author Andrzej Przekwas, Ph.D., and his team at CFD Research Corporation in Huntsville, Alabama.

"The resulting calculated maximum nicotine concentrations, the time needed for nicotine to reach the different tissue compartments, and the clearance rates in the Liver Chips in our in vitro-based in silico model mirrored closely what had been measured previously in patients," said Ben Maoz, Ph.D., a co-first author on the second study and former Technology Development Fellow at the Wyss Institute in the lab of Parker. Maoz currently is an Assistant Professor at Tel Aviv University, Israel.

With a second multi-Organ Chip configuration comprising fluidically-linked Liver, Kidney, and Bone Marrow Chips, the team investigated the pharmacological effects of cisplatin, a chemotherapeutic drug commonly used in cancer treatments, which is administered intravenously and displays unwanted toxicity in the kidney and bone marrow. "Our analysis recapitulates the pharmacodynamic effects of cisplatin in patients, including a decrease in numbers of different blood cell types and an increase in markers of kidney injury," said co-first author Anna Herland, Ph.D., who worked on Ingber's team at the time of the study. "In addition, the in vitro-to-in vivo translation capabilities of the system produced quantitative information on how cisplatin is metabolized and cleared by the liver and kidney, which will make it suitable for more refined predictions of drug absorption, distribution, metabolism, excretion and toxicity." Herland is now an Associate Professor at KTH Royal Institute of Technology and the Karolinska Institute in Stockholm, Sweden.

"This is what we love to do at the Wyss Institute: make science fiction into science fact. And we hope our demonstration that this level of biomimicry is possible using Organ Chip technology will garner even greater interest from the pharmaceutical industry so that animal testing can be progressively reduced over time," said Ingber.
Additional authors (listed in alphabetical order) on one or both of the studies, including researchers from the Wyss Institute, partner institutions, and industry are D. Das, M. Ingram, A. Delahanty, S. Jeanty, S. Marques, M. Somayaji; A. Bahinski, M. Burt, E. Calamari, A. Chalkiadaki, A. Cho, Y. Choe, D. B. Chou, M. Cronce, S. Dauth, T. Divic, J. Fernandez-Alcon, T. Ferrante, J. Ferrier, E. Fitzgerald, R. Fleming, J. Goss, T. Grevesse, S. Jalili-Firoozinezhad, G. Hamilton, T. Hamkins-Indik, O. Henry, C. Hinojosa, T. Huffstater, , , K.-J. Jang, V. Kujala, L. Leng, D. Levner, O. Levy, R. Mannix, Y. Milton, J. Nawroth, B. Nestor, C. Ng, B. O-Connor, T.-E. Park, H. Sanchez, J. Sliz, A. Sontheimer-Phelps, B. Swenor, G. Thompson II, G. Touloumes, Z. Tranchemontagne, N. Wen, and M. Yadid. Besides being funded by the DARPA, the studies received additional support from the National Science Foundation. Several authors on both studies who were previous Wyss staff members are now employees of Emulate Inc; Ingber and Parker also hold equity in Emulate. Inc. and are members of its scientific advisory board.


Wyss Institute for Biologically Inspired Engineering at Harvard University

Benjamin Boettner,, +1 617-432-8232


The Wyss Institute for Biologically Inspired Engineering at Harvard University ( uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Science Articles:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.
Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.
Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.
Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.
World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.
PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.
Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.
Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.
Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.
More Science News and Science Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at     You can read The Transition Integrity Project's report here.