Nav: Home

Genetic marking discovery improves fruit quality, bolsters climate defenses

January 27, 2020

ITHACA, N.Y. - Transferring genetic markers in plant breeding is a challenge, but a team of grapevine breeders and scientists at Cornell University have come up with a powerful new method that improves fruit quality and acts as a key defense against pests and a changing climate.

Plant breeders are always striving to develop new varieties that satisfy growers, producers and consumers. To do this, breeders use genetic markers to bring desirable traits from wild species into their cultivated cousins.

The team's new technique for developing genetic markers improves markers' transfer rate across grapevine species from 2% to 92%. With it, breeders worldwide can screen their collections and find out immediately which vines have the traits they want - regardless of what varieties they are, where they came from or which species their parents were.

"This new marker development strategy goes well beyond grapes," said co-author Bruce Reisch, professor of horticulture in the College of Agriculture and Life Sciences, and leader of Cornell's Grapevine Breeding and Genetics Program. "It's applicable for breeding and genetic studies across different grape breeding programs, plant species and other diverse organisms."

To create the genetic markers, the research team used new automated DNA sequencing technology to create a "core genome" for grapevines, matching important regions shared between 10 species' genomes. Using powerful new genetic mapping technology, they targeted those regions to develop robust DNA markers.

This breakthrough in translating the grapevine genome into a common language for breeders is central to the mission of VitisGen2, the second iteration of a multi-institution research project from which the new marker development strategy emerged.

"This is game-changing work - and it's only the beginning," said Donnell Brown, president of the National Grape Research Alliance, an industry-led nonprofit representing the research interests of wine, juice, raisin and table grapes. "From here, we can greatly accelerate the genetic exploration that will help us improve fruit and production quality and, ultimately, respond to the threats of pests and diseases, a changing climate and more."
-end-
The research was published in Nature Communications and was supported by grants from the U.S. Department of Agriculture and the National Science Foundation.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Cornell University

Related Agriculture Articles:

Post-pandemic brave new world of agriculture
Recent events have shown how vulnerable the meat processing industry is to COVID-19.
Agriculture - a climate villain? Maybe not!
The UN's Intergovernmental Panel on Climate Change (IPCC) claims that agriculture is one of the main sources of greenhouse gases, and is thus by many observers considered as a climate villain.
Digital agriculture paves the road to agricultural sustainability
In a study published in Nature Sustainability, researchers outline how to develop a more sustainable land management system through data collection and stakeholder buy-in.
Comparisons of organic and conventional agriculture need to be better, say researchers
The environmental effects of agriculture and food are hotly debated.
EU agriculture not viable for the future
The current reform proposals of the EU Commission on the Common Agricultural Policy (CAP) are unlikely to improve environmental protection, say researchers led by the German Centre for Integrative Biodiversity Research (iDiv), the Helmholtz Centre for Environmental Research (UFZ) and the University of Göttingen in the journal Science.
Global agriculture: Impending threats to biodiversity
A new study compares the effects of expansion vs. intensification of cropland use on global agricultural markets and biodiversity, and finds that the expansion strategy poses a particularly serious threat to biodiversity in the tropics.
A new vision for genomics in animal agriculture
Iowa State University animal scientists helped to form a blueprint to guide the next decade of animal genomics research.
New pathways for sustainable agriculture
Diversity beats monotony: a colourful patchwork of small, differently used plots can bring advantages to agriculture and nature.
The future of agriculture is computerized
Researchers at the MIT Media Lab Open Agriculture Initiative have used computer algorithms to determine the optimal growing conditions to improve basil plants' taste by maximizing the concentration of flavorful molecules known as volatile compounds.
When yesterday's agriculture feeds today's water pollution
Water quality is threatened by a long history of fertilizer use on land, Canadian scientists find.
More Agriculture News and Agriculture Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.